login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
A227343 Matrix inverse of triangle A227342. 2
1, 1, 1, 3, 3, 1, 13, 13, 6, 1, 75, 75, 37, 10, 1, 541, 541, 270, 85, 15, 1, 4683, 4683, 2341, 770, 170, 21, 1, 47293, 47293, 23646, 7861, 1890, 308, 28, 1, 545835, 545835, 272917, 90930, 22491, 4158, 518, 36, 1, 7087261, 7087261, 3543630, 1181125, 294525, 57351, 8400, 822, 45, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,4
COMMENTS
The e.g.f. has the form A(t)*exp(x*B(t)), where A(t) = 1/(2 - exp(t)) and B(t) = exp(t) - 1. Thus the row polynomials of this triangle form a Sheffer sequence for the pair (1 - t, log(1 + t)) (see Roman, p.17).
Let x_(k) := x*(x-1)*...*(x-k+1) denote the k-th falling factorial polynomial. Define a sequence x_[n] of basis polynomials for the polynomial algebra C[x] by setting x_[0] = 1, and setting x_[n] = x_(n-1)*(x - 2*n + 1) for n >= 1. The sequence begins [1, x-1, x*(x-3), x*(x-1)*(x-5), x*(x-1)*(x-2)*(x-7), ...]. Then this is the triangle of connection constants for expressing the monomial polynomials x^n as a linear combination of the basis x_[k], that is, x^n = sum {k = 0..n} T(n,k)*x_[k]. An example is given below.
REFERENCES
S. Roman, The umbral calculus, Pure and Applied Mathematics 111, Academic Press Inc., New York, 1984. Reprinted by Dover in 2005.
LINKS
Eric Weisstein's World of Mathematics, Sheffer Sequence
FORMULA
E.g.f.: 1/(2 - exp(t))*exp(x*(exp(t) - 1)) = 1 + (1 + x)*t + (3 + 3*x + x^2)*t^2/2! + (13 + 13*x + 6*x^2 + x^3)*t^3/3! + ....
Recurrence equation: T(n,0) = A000670(n), and for k >= 1, T(n,k) = 1/k*sum {i = 1..n} binomial(n,i)*T(n-i,k-1).
The row polynomials R(n,x) satisfy the Sheffer identity R(n,x + y) = sum {k = 0..n} binomial(n,k)*Bell(k,y)*R(n-k,x), where Bell(k,y) is the Bell or exponential polynomial (row polynomials of A048993).
The row polynomials also satisfy d/dx(R(n,x)) = sum {k = 0..n-1} binomial(n,k)*R(k,x).
Row sums A059099. Column 1 and column 2 = A000670. 1 + 2*column 3 = A000670 (apart from the first two terms).
From Emanuele Munarini, Dec 21 2016: (Start)
T(n,k) = (n!/k!)*[t^n](1/(2-exp(t))(exp(t)-1)^k.
T(n,k) = (n!/k!)*[t^(n-k)](t/log(1+t))^(n+1)/(1-t^2). (End)
EXAMPLE
Triangle begins
n\k| 0 1 2 3 4 5
= = = = = = = = = = = = = = = = =
0 | 1
1 | 1 1
2 | 3 3 1
3 | 13 13 6 1
4 | 75 75 37 10 1
5 | 541 541 270 85 15 1
...
Connection constants. Row 4 = [75,75,37,10,1]: Thus
75 + 75*(x - 1) + 37*x*(x - 3) + 10*x*(x - 1)*(x - 5)+ x*(x - 1)*(x - 2)*(x - 7) = x^4.
MATHEMATICA
T[n_, k_] := n!/k! SeriesCoefficient[Series[1/(2 - Exp[t]) (Exp[t] - 1)^k, {t, 0, n}], n]
Flatten[Table[T[n, k], {n, 0, 12}, {k, 0, n}]]
U[n_, k_] := n!/k! SeriesCoefficient[Series[1/(1 - t^2) (t/Log[1 + t])^(n + 1), {t, 0, n - k}], n - k]
Flatten[Table[U[n, k], {n, 0, 8}, {k, 0, n}]] (* Emanuele Munarini, Dec 21 2016 *)
CROSSREFS
A000670 (columns 1 and 2), A048993, A059099 (row sums), A105794, A227342 (matrix inverse).
Sequence in context: A094021 A062746 A115193 * A216294 A039797 A143171
KEYWORD
nonn,easy,tabl
AUTHOR
Peter Bala, Jul 11 2013
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 27 18:39 EDT 2024. Contains 375471 sequences. (Running on oeis4.)