login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Search: a002972 -id:a002972
Displaying 1-10 of 15 results found. page 1 2
     Sort: relevance | references | number | modified | created      Format: long | short | data
A279392 Bisection of primes congruent to 1 modulo 4 (A002144), depending on the corresponding sum of the A002972 and 2*A002973 entries being congruent to 1 modulo 4 or not. Here we give the first case. +20
2
13, 17, 41, 53, 89, 97, 109, 149, 157, 229, 233, 257, 281, 313, 317, 337, 353, 373, 397, 401, 421, 433, 457, 461, 557, 569, 577, 601, 641, 709, 733, 769, 797, 809 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
The primes from A002144 (1 (mod 4) primes) have the property A002144(n) = A002972(n)^2 + (2*A002973(n))^2 = A(n)^2 + B(n)^2 with odd A(n) and even B(n). A bisection of A002144 is given depending on A(n) + B(n) == 1 (mod 4) (part I) or A(n) + B(n) == 3 (mod 4) (part II). The present sequence gives part I of this bisection. The other part II is given in A279393.
This bisection appears in the formula for the p-defects of the congruence y^2 == x^3 + 4*x (mod p) for primes p == 1 (mod 4). See A278720 where for nonvanishing entries the sign is conjectured to be + for these part I primes, and it is - for the part II primes from A279393.
LINKS
FORMULA
A prime A002144(m) = A(m)^2 + B(m)^2 belongs to this sequence iff (-1)^((A(m)-1)/2 + B(m)/2) = +1, where A(m) = A002972(m) and B(m)/2 = A002973(m).
EXAMPLE
a(1) = 13 is the first prime from A002144 which has A + B = 1 (mod 4) because 13 = A002144(2) = A(2)^2 + B(2)^2 = 3^2 + (2*1)^2, and 3 + 2 = 5 == 1 (mod 4), and A002144(1) = 5 leads to A + B = 3 (mod 4), because 5 = 1^2 + (2*1)^2.
CROSSREFS
KEYWORD
nonn,easy,more
AUTHOR
Wolfdieter Lang, Dec 11 2016
STATUS
approved
A279393 Bisection of primes congruent to 1 modulo 4 (A002144), depending on the corresponding sum of the A002972 and 2*A002973 entries being congruent to 1 modulo 4 or not. Here we give the second case. +20
2
5, 29, 37, 61, 73, 101, 113, 137, 173, 181, 193, 197, 241, 269, 277, 293, 349, 389, 409, 449, 509, 521, 541, 593, 613, 617, 653, 661, 673, 677, 701, 757, 761, 773, 821 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
See A279392 for details of this bisection of the primes of A002144. This sequence gives the part II of primes congruent 1 modulo 4.
LINKS
FORMULA
A prime A002144(m) = A(m)^2 + B(m)^2 belongs to this sequence iff (-1)^((A(m)-1)/2 + B(m)/2) = -1, where A(m) = A002972(m) and B(m)/2 = A002973(m).
EXAMPLE
a(1) = 5 = A002144(1) and A002972(1) = 1 and 2*A002973(1) = 2, hence 1 + 2 = 3 == 3 (mod 4), and 5 belongs to part II of this bisection.
CROSSREFS
KEYWORD
nonn,easy,more
AUTHOR
Wolfdieter Lang, Dec 11 2016
STATUS
approved
A267858 Positions of entries of A002972 that are congruent to 1 modulo 4. +20
1
1, 3, 4, 5, 6, 8, 10, 11, 12, 18, 19, 21, 23, 25, 26, 27, 28, 29, 30, 32, 33, 34, 36, 38, 41, 43, 45, 47, 49, 50, 52, 53, 55, 56, 57, 59, 60, 63, 65, 66, 68, 69, 72, 73, 74, 77, 78, 85, 87, 88, 89, 90, 91, 93, 94, 95, 96, 100, 104, 105, 106, 108, 110, 112, 115, 119, 120, 122, 127, 128, 131 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
This sequence is needed for the number of solutions modulo primes congruent to 1 modulo 4 of the elliptic curve y^2 = x^3 + x See A095978.
If a positive integer m is not in this sequence then A002972(m) == 3 (mod 4).
LINKS
FORMULA
A002972(a(n)) == 1 (mod 4), n >= 1.
EXAMPLE
n=1: A002972(1) = 1 == 1 (mod 4). But because m = 2 is not in this sequence A002972(2) = 3 == 3 (mod 4).
MATHEMATICA
pmax = 2000; odd[p_] := Module[{k, m}, 2m+1 /. ToRules[Reduce[k>0 && m >= 0 && (2k)^2 + (2m+1)^2 == p, {k, m}, Integers]]]; Reap[For[n=1; p=5, p < pmax, p = NextPrime[p], If[Mod[p, 4]==1, If[Mod[odd[p], 4]==1, Sow[n]]; n++]]][[2, 1]] (* Jean-François Alcover, Feb 26 2016 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Wolfdieter Lang, Feb 06 2016
STATUS
approved
A002144 Pythagorean primes: primes of the form 4*k + 1.
(Formerly M3823 N1566)
+10
482
5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109, 113, 137, 149, 157, 173, 181, 193, 197, 229, 233, 241, 257, 269, 277, 281, 293, 313, 317, 337, 349, 353, 373, 389, 397, 401, 409, 421, 433, 449, 457, 461, 509, 521, 541, 557, 569, 577, 593, 601, 613, 617 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Rational primes that decompose in the field Q(sqrt(-1)). - N. J. A. Sloane, Dec 25 2017
These are the prime terms of A009003.
-1 is a quadratic residue mod a prime p if and only if p is in this sequence.
Sin(a(n)*Pi/2) = 1 with Pi = 3.1415..., see A070750. - Reinhard Zumkeller, May 04 2002
If at least one of the odd primes p, q belongs to the sequence, then either both or neither of the congruences x^2 = p (mod q), x^2 = q (mod p) are solvable, according to Gauss reciprocity law. - Lekraj Beedassy, Jul 17 2003
Odd primes such that binomial(p-1, (p-1)/2) == 1 (mod p). - Benoit Cloitre, Feb 07 2004
Primes that are the hypotenuse of a right triangle with integer sides. The Pythagorean triple is {A002365(n), A002366(n), a(n)}.
Also, primes of the form a^k + b^k, k > 1. - Amarnath Murthy, Nov 17 2003
The square of a(n) is the average of two other squares. This fact gives rise to a class of monic polynomials x^2 + bx + c with b = a(n) that will factor over the integers regardless of the sign of c. See A114200. - Owen Mertens (owenmertens(AT)missouristate.edu), Nov 16 2005
Also such primes p that the last digit is always 1 for the Nexus numbers of form n^p - (n-1)^p. - Alexander Adamchuk, Aug 10 2006
The set of Pythagorean primes is a proper subset of the set of positive fundamental discriminants (A003658). - Paul Muljadi, Mar 28 2008
A079260(a(n)) = 1; complement of A137409. - Reinhard Zumkeller, Oct 11 2008
From Artur Jasinski, Dec 10 2008: (Start)
If we take 4 numbers: 1, A002314(n), A152676(n), A152680(n) then multiplication table modulo a(n) is isomorphic to the Latin square:
1 2 3 4
2 4 1 3
3 1 4 2
4 3 2 1
and isomorphic to the multiplication table of {1, i, -i, -1} where i is sqrt(-1), A152680(n) is isomorphic to -1, A002314(n) with i or -i and A152676(n) vice versa -i or i. 1, A002314(n), A152676(n), A152680(n) are subfield of Galois field [a(n)]. (End)
Primes p such that the arithmetic mean of divisors of p^3 is an integer. There are 2 sequences of such primes: this one and A002145. - Ctibor O. Zizka, Oct 20 2009
Equivalently, the primes p for which the smallest extension of F_p containing the square roots of unity (necessarily F_p) contains the 4th roots of unity. In this respect, the n = 2 case of a family of sequences: see n=3 (A129805) and n=5 (A172469). - Katherine E. Stange, Feb 03 2010
Subsequence of A007969. - Reinhard Zumkeller, Jun 18 2011
A151763(a(n)) = 1.
k^k - 1 is divisible by 4*k + 1 if 4*k + 1 is a prime (see Dickson reference). - Gary Detlefs, May 22 2013
Not only are the squares of these primes the sum of two nonzero squares, but the primes themselves are also. 2 is the only prime equal to the sum of two nonzero squares and whose square is not. 2 is therefore not a Pythagorean prime. - Jean-Christophe Hervé, Nov 10 2013
The statement that these primes are the sum of two nonzero squares follows from Fermat's theorem on the sum of two squares. - Jerzy R Borysowicz, Jan 02 2019
The decompositions of the prime and its square into two nonzero squares are unique. - Jean-Christophe Hervé, Nov 11 2013. See the Dickson reference, Vol. II, (B) on p. 227. - Wolfdieter Lang, Jan 13 2015
p^e for p prime of the form 4*k+1 and e >= 1 is the sum of 2 nonzero squares. - Jon Perry, Nov 23 2014
Primes p such that the area of the isosceles triangle of sides (p, p, q) for some integer q is an integer. - Michel Lagneau, Dec 31 2014
This is the set of all primes that are the average of two squares. - Richard R. Forberg, Mar 01 2015
Numbers k such that ((k-3)!!)^2 == -1 (mod k). - Thomas Ordowski, Jul 28 2016
This is a subsequence of primes of A004431 and also of A016813. - Bernard Schott, Apr 30 2022
In addition to the comment from Jean-Christophe Hervé, Nov 10 2013: All powers as well as the products of any of these primes are the sum of two nonzero squares. They are terms of A001481, which is closed under multiplication. - Klaus Purath, Nov 19 2023
REFERENCES
David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989.
L. E. Dickson, "History of the Theory of Numbers", Chelsea Publishing Company, 1919, Vol I, page 386
L. E. Dickson, History of the Theory of Numbers, Carnegie Institution, Publ. No. 256, Vol. II, Washington D.C., 1920, p. 227.
M. du Sautoy, The Music of the Primes, Fourth Estate / HarperCollins, 2003; see p. 76.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Zak Seidov, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math.Series 55, Tenth Printing, 1972.
Peter R. J. Asveld, On a Post's System of Tag. Bulletin of the EATCS 36 (1988), 96-102.
C. Banderier, Calcul de (-1/p)
J. Butcher, Mathematical Miniature 8: The Quadratic Residue Theorem, NZMS Newsletter, No. 75, April 1999.
Hing Lun Chan, Windmills of the minds: an algorithm for Fermat's Two Squares Theorem, arXiv:2112.02556 [cs.LO], 2021.
A. David Christopher, A partition-theoretic proof of Fermat's Two Squares Theorem, Discrete Mathematics, Volume 339, Issue 4, 6 April 2016, Pages 1410-1411.
J. E. Ewell, A Simple Proof of Fermat's Two-Square Theorem, The American Mathematical Monthly, Vol. 90, No. 9 (Nov., 1983), pp. 635-637.
Bernard Frénicle de Bessy, Méthode pour trouver la solution des problèmes par les exclusions. Abrégé des combinaisons. Des Quarrez magiques, in "Divers ouvrages de mathématiques et de physique, par MM. de l'Académie royale des sciences", (1693) "Troisième exemple", pp. 17-26, see in particular p. 25.
A. Granville and G. Martin, Prime number races, arXiv:math/0408319 [math.NT], 2004.
D. & C. Hazzlewood, Quadratic Reciprocity
Ernest G. Hibbs, Component Interactions of the Prime Numbers, Ph. D. Thesis, Capitol Technology Univ. (2022), see p. 33.
Lucas Lacasa, Bartolome Luque, Ignacio Gómez, and Octavio Miramontes, On a Dynamical Approach to Some Prime Number Sequences, Entropy 20.2 (2018): 131, also arXiv:1802.08349 [math.NT], 2018.
Carlos Rivera, Puzzle 968. Another property of primes 4m+1, The Prime Puzzles & Problems Connection.
D. Shanks, Review of "K. E. Kloss et al., Class number of primes of the form 4n+1", Math. Comp., 23 (1969), 213-214. [Annotated scanned preprint of review]
S. A. Shirali, A family portrait of primes-a case study in discrimination, Math. Mag. Vol. 70, No. 4 (Oct., 1997), pp. 263-272.
Rosemary Sullivan and Neil Watling, Independent divisibility pairs on the set of integers from 1 to n, INTEGERS 13 (2013) #A65.
Eric Weisstein's World of Mathematics, Wilson's Theorem
Eric Weisstein's World of Mathematics, Pythagorean Triples
Wolfram Research, The Gauss Reciprocity Law
G. Xiao, Two squares
D. Zagier, A One-Sentence Proof That Every Prime p == 1 (mod 4) Is a Sum of Two Squares, Am. Math. Monthly, Vol. 97, No. 2 (Feb 1990), p. 144. [From Wolfdieter Lang, Jan 17 2015 (thanks to Charles Nash)]
FORMULA
Odd primes of form x^2 + y^2, (x=A002331, y=A002330, with x < y) or of form u^2 + 4*v^2, (u = A002972, v = A002973, with u odd). - Lekraj Beedassy, Jul 16 2004
p^2 - 1 = 12*Sum_{i = 0..floor(p/4)} floor(sqrt(i*p)) where p = a(n) = 4*n + 1. [Shirali]
a(n) = A000290(A002972(n)) + A000290(2*A002973(n)) = A000290(A002331(n+1)) + A000290(A002330(n+1)). - Reinhard Zumkeller, Feb 16 2010
a(n) = A002972(n)^2 + (2*A002973(n))^2, n >= 1. See the Jean-Christophe Hervé Nov 11 2013 comment. - Wolfdieter Lang, Jan 13 2015
a(n) = 4*A005098(n) + 1. - Zak Seidov, Sep 16 2018
From Vaclav Kotesovec, Apr 30 2020: (Start)
Product_{k>=1} (1 - 1/a(k)^2) = A088539.
Product_{k>=1} (1 + 1/a(k)^2) = A243380.
Product_{k>=1} (1 - 1/a(k)^3) = A334425.
Product_{k>=1} (1 + 1/a(k)^3) = A334424.
Product_{k>=1} (1 - 1/a(k)^4) = A334446.
Product_{k>=1} (1 + 1/a(k)^4) = A334445.
Product_{k>=1} (1 - 1/a(k)^5) = A334450.
Product_{k>=1} (1 + 1/a(k)^5) = A334449. (End)
From Vaclav Kotesovec, May 05 2020: (Start)
Product_{k>=1} (1 + 1/A002145(k)) / (1 + 1/a(k)) = Pi/(4*A064533^2) = 1.3447728438248695625516649942427635670667319092323632111110962...
Product_{k>=1} (1 - 1/A002145(k)) / (1 - 1/a(k)) = Pi/(8*A064533^2) = 0.6723864219124347812758324971213817835333659546161816055555481... (End)
Sum_{k >= 1} 1/a(k)^s = (1/2) * Sum_{n >= 1 odd numbers} moebius(n) * log((2*n*s)! * zeta(n*s) * abs(EulerE(n*s - 1)) / (Pi^(n*s) * 2^(2*n*s) * BernoulliB(2*n*s) * (2^(n*s) + 1) * (n*s - 1)!))/n, s >= 3 odd number. - Dimitris Valianatos, May 21 2020
Legendre symbol (-1, a(n)) = +1, for n >= 1. - Wolfdieter Lang, Mar 03 2021
EXAMPLE
The following table shows the relationship between several closely related sequences:
Here p = A002144 = primes == 1 (mod 4), p = a^2+b^2 with a < b;
a = A002331, b = A002330, t_1 = ab/2 = A070151;
p^2 = c^2 + d^2 with c < d; c = A002366, d = A002365,
t_2 = 2ab = A145046, t_3 = b^2 - a^2 = A070079,
with {c,d} = {t_2, t_3}, t_4 = cd/2 = ab(b^2-a^2).
---------------------------------
p a b t_1 c d t_2 t_3 t_4
---------------------------------
5 1 2 1 3 4 4 3 6
13 2 3 3 5 12 12 5 30
17 1 4 2 8 15 8 15 60
29 2 5 5 20 21 20 21 210
37 1 6 3 12 35 12 35 210
41 4 5 10 9 40 40 9 180
53 2 7 7 28 45 28 45 630
...
a(7) = 53 = A002972(7)^2 + (2*A002973(7))^2 = 7^2 + (2*1)^2 = 49 + 4, and this is the only way. - Wolfdieter Lang, Jan 13 2015
MAPLE
a := []; for n from 1 to 500 do if isprime(4*n+1) then a := [op(a), 4*n+1]; fi; od: A002144 := n->a[n];
# alternative
A002144 := proc(n)
option remember ;
local a;
if n = 1 then
5;
else
for a from procname(n-1)+4 by 4 do
if isprime(a) then
return a;
end if;
end do:
end if;
end proc:
seq(A002144(n), n=1..100) ; # R. J. Mathar, Jan 31 2024
MATHEMATICA
Select[4*Range[140] + 1, PrimeQ[ # ] &] (* Stefan Steinerberger, Apr 16 2006 *)
Select[Prime[Range[150]], Mod[#, 4]==1&] (* Harvey P. Dale, Jan 28 2021 *)
PROG
(Haskell)
a002144 n = a002144_list !! (n-1)
a002144_list = filter ((== 1) . a010051) [1, 5..]
-- Reinhard Zumkeller, Mar 06 2012, Feb 22 2011
(Magma) [a: n in [0..200] | IsPrime(a) where a is 4*n + 1 ]; // Vincenzo Librandi, Nov 23 2014
(PARI) select(p->p%4==1, primes(1000))
(PARI)
A002144_next(p=A2144[#A2144])={until(isprime(p+=4), ); p} /* NB: p must be of the form 4k+1. Beyond primelimit, this is *much* faster than forprime(p=..., , p%4==1 && return(p)). */
A2144=List(5); A002144(n)={while(#A2144<n, listput(A2144, A002144_next())); A2144[n]}
\\ M. F. Hasler, Jul 06 2024
(Python)
from sympy import prime
A002144 = [n for n in (prime(x) for x in range(1, 10**3)) if not (n-1) % 4]
# Chai Wah Wu, Sep 01 2014
(Python)
from sympy import isprime
print(list(filter(isprime, range(1, 618, 4)))) # Michael S. Branicky, May 13 2021
(SageMath)
def A002144_list(n): # returns all Pythagorean primes <= n
return [x for x in prime_range(5, n+1) if x % 4 == 1]
A002144_list(617) # Peter Luschny, Sep 12 2012
CROSSREFS
Cf. A004613 (multiplicative closure).
Apart from initial term, same as A002313.
For values of n see A005098.
Primes in A020668.
KEYWORD
nonn,easy,nice
AUTHOR
STATUS
approved
A005098 Numbers k such that 4k + 1 is prime. +10
40
1, 3, 4, 7, 9, 10, 13, 15, 18, 22, 24, 25, 27, 28, 34, 37, 39, 43, 45, 48, 49, 57, 58, 60, 64, 67, 69, 70, 73, 78, 79, 84, 87, 88, 93, 97, 99, 100, 102, 105, 108, 112, 114, 115, 127, 130, 135, 139, 142, 144, 148, 150, 153, 154, 160, 163, 165, 168, 169, 175, 177, 183 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Sum of i-th and j-th triangular numbers, where i=A096029(n), j=A096030(n); i.e., a(n) = A000217(A096029(n)) + A000217(A096030(n)). - Lekraj Beedassy, Jun 16 2004
For every k in the sequence, there is exactly 1 square number that can be subtracted to leave a pronic (A002378). E.g., 27 - 25 = 2, 99 - 9 = 90. - Jon Perry, Nov 06 2010
See A208295 for details concerning the preceding Jon Perry comment. - Wolfdieter Lang, Mar 29 2012
a(k) appears in the o.g.f. for floor(A002144(k)*j^2/4), j >= 0, for k >= 1: x*(a(k)*(1 + x^2) + b(k)*x)/((1 - x)^3*(1 + x)), together with b(k) = (A002144(k) + 1)/2 = A119681(k). - Wolfdieter Lang, Aug 07 2013
LINKS
Zak Seidov, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
Eric Weisstein's World of Mathematics, Wilson's Theorem.
FORMULA
a(n) = (A002144(n)-1)/4.
MAPLE
a := []; for k from 1 to 500 do if isprime(4*k+1) then a := [op(a), k]; fi; od: A005098 := k->a[k];
MATHEMATICA
Select[Range[200], PrimeQ[4# + 1] &] (* Harvey P. Dale, Apr 20 2011 *)
PROG
(Magma) [k: k in [0..10000] | IsPrime(4*k+1)] // Vincenzo Librandi, Nov 18 2010
(PARI) is(k)=isprime(4*k+1) \\ Charles R Greathouse IV, Nov 20 2012
(Haskell)
a005098 = (`div` 4) . (subtract 1) . a002144
-- Reinhard Zumkeller, Mar 17 2013
CROSSREFS
See A002144 for the actual primes.
KEYWORD
nonn,nice,easy
AUTHOR
EXTENSIONS
More terms from Ray Chandler, Jun 26 2004
Edited by Charles R Greathouse IV, Mar 17 2010
STATUS
approved
A002330 Value of y in the solution to p = x^2 + y^2, x <= y, with prime p = A002313(n).
(Formerly M0462 N0169)
+10
39
1, 2, 3, 4, 5, 6, 5, 7, 6, 8, 8, 9, 10, 10, 8, 11, 10, 11, 13, 10, 12, 14, 15, 13, 15, 16, 13, 14, 16, 17, 13, 14, 16, 18, 17, 18, 17, 19, 20, 20, 15, 17, 20, 21, 19, 22, 20, 21, 19, 20, 24, 23, 24, 18, 19, 25, 22, 25, 23, 26, 26, 22, 27, 26, 20, 25, 22, 26, 28, 25 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
REFERENCES
A. J. C. Cunningham, Quadratic Partitions. Hodgson, London, 1904, p. 1.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
John Brillhart, Note on representing a prime as a sum of two squares, Math. Comp. 26 (1972), pp. 1011-1013.
A. J. C. Cunningham, Quadratic Partitions, Hodgson, London, 1904. [Annotated scans of selected pages]
J. Todd, A problem on arc tangent relations, Amer. Math. Monthly, 56 (1949), 517-528.
Eric Weisstein's World of Mathematics, Fermat's 4n Plus 1 Theorem.
FORMULA
a(n) = A096029(n) + A096030(n) + 1, for n>1. - Lekraj Beedassy, Jul 21 2004
a(n+1) = Max(A002972(n), 2*A002973(n)). - Reinhard Zumkeller, Feb 16 2010
EXAMPLE
The following table shows the relationship between several closely related sequences:
Here p = A002144 = primes == 1 (mod 4), p = a^2+b^2 with a < b;
a = A002331, b = A002330, t_1 = ab/2 = A070151;
p^2 = c^2+d^2 with c < d; c = A002366, d = A002365,
t_2 = 2ab = A145046, t_3 = b^2-a^2 = A070079,
with {c,d} = {t_2, t_3}, t_4 = cd/2 = ab(b^2-a^2).
---------------------------------
.p..a..b..t_1..c...d.t_2.t_3..t_4
---------------------------------
.5..1..2...1...3...4...4...3....6
13..2..3...3...5..12..12...5...30
17..1..4...2...8..15...8..15...60
29..2..5...5..20..21..20..21..210
37..1..6...3..12..35..12..35..210
41..4..5..10...9..40..40...9..180
53..2..7...7..28..45..28..45..630
.................................
MAPLE
a := []; for x from 0 to 50 do for y from x to 50 do p := x^2+y^2; if isprime(p) then a := [op(a), [p, x, y]]; fi; od: od: writeto(trans); for i from 1 to 158 do lprint(a[i]); od: # then sort the triples in "trans"
MATHEMATICA
Flatten[#, 1]&[Table[PowersRepresentations[Prime[k], 2, 2], {k, 1, 142}]][[All, 2]] (* Jean-François Alcover, Jul 05 2011 *)
PROG
(PARI) f(p)=my(s=lift(sqrt(Mod(-1, p))), x=p, t); if(s>p/2, s=p-s); while(s^2>p, t=s; s=x%s; x=t); s
forprime(p=2, 1e3, if(p%4-3, print1(f(p)", "))) \\ Charles R Greathouse IV, Apr 24 2012
(PARI) do(p)=qfbsolve(Qfb(1, 0, 1), p)[1]
forprime(p=2, 1e3, if(p%4-3, print1(do(p)", "))) \\ Charles R Greathouse IV, Sep 26 2013
(PARI) print1(1); forprimestep(p=5, 1e3, 4, print1(", "qfbcornacchia(1, p)[1])) \\ Charles R Greathouse IV, Sep 15 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved
A002331 Values of x in the solution to p = x^2 + y^2, x <= y, with prime p = A002313(n).
(Formerly M0096 N0033)
+10
23
1, 1, 2, 1, 2, 1, 4, 2, 5, 3, 5, 4, 1, 3, 7, 4, 7, 6, 2, 9, 7, 1, 2, 8, 4, 1, 10, 9, 5, 2, 12, 11, 9, 5, 8, 7, 10, 6, 1, 3, 14, 12, 7, 4, 10, 5, 11, 10, 14, 13, 1, 8, 5, 17, 16, 4, 13, 6, 12, 1, 5, 15, 2, 9, 19, 12, 17, 11, 5, 14, 10, 18, 4, 6, 16, 20, 19, 10, 13, 4, 6, 15, 22, 11, 3, 5 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
REFERENCES
A. J. C. Cunningham, Quadratic Partitions. Hodgson, London, 1904, p. 1.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
A. T. Benjamin and D. Zeilberger, Pythagorean primes and palindromic continued fractionsINTEGERS 5(1) (2005) #A30
John Brillhart, Note on representing a prime as a sum of two squares, Math. Comp. 26 (1972), pp. 1011-1013.
A. J. C. Cunningham, Quadratic Partitions, Hodgson, London, 1904. [Annotated scans of selected pages]
J. Todd, A problem on arc tangent relations, Amer. Math. Monthly, 56 (1949), 517-528.
Eric Weisstein's World of Mathematics, Fermat's 4n Plus 1 Theorem.
FORMULA
a(n) = A096029(n) - A096030(n) for n > 1. - Lekraj Beedassy, Jul 16 2004
a(n+1) = Min(A002972(n), 2*A002973(n)). - Reinhard Zumkeller, Feb 16 2010
a(n) = A363051(A002313(n)). - R. J. Mathar, Jan 31 2024
EXAMPLE
The following table shows the relationship
between several closely related sequences:
Here p = A002144 = primes == 1 (mod 4), p = a^2+b^2 with a < b;
a = A002331, b = A002330, t_1 = ab/2 = A070151;
p^2 = c^2+d^2 with c < d; c = A002366, d = A002365,
t_2 = 2ab = A145046, t_3 = b^2-a^2 = A070079,
with {c,d} = {t_2, t_3}, t_4 = cd/2 = ab(b^2-a^2).
---------------------------------
.p..a..b..t_1..c...d.t_2.t_3..t_4
---------------------------------
.5..1..2...1...3...4...4...3....6
13..2..3...3...5..12..12...5...30
17..1..4...2...8..15...8..15...60
29..2..5...5..20..21..20..21..210
37..1..6...3..12..35..12..35..210
41..4..5..10...9..40..40...9..180
53..2..7...7..28..45..28..45..630
.................................
MAPLE
See A002330 for Maple program.
# alternative
A002331 := proc(n)
end proc:
seq(A002331(n), n=1..100) ; # R. J. Mathar, Feb 01 2024
MATHEMATICA
pmax = 1000; x[p_] := Module[{x, y}, x /. ToRules[Reduce[0 <= x <= y && x^2 + y^2 == p, {x, y}, Integers]]]; For[n=1; p=2, p<pmax, p = NextPrime[p], If[Mod[p, 4] == 1 || Mod[p, 4] == 2, a[n] = x[p]; Print["a(", n, ") = ", a[n]]; n++]]; Array[a, n-1] (* Jean-François Alcover, Feb 26 2016 *)
PROG
(PARI) f(p)=my(s=lift(sqrt(Mod(-1, p))), x=p, t); if(s>p/2, s=p-s); while(s^2>p, t=s; s=x%s; x=t); s
forprime(p=2, 1e3, if(p%4-3, print1(sqrtint(p-f(p)^2)", ")))
\\ Charles R Greathouse IV, Apr 24 2012
(PARI) do(p)=qfbsolve(Qfb(1, 0, 1), p)[2]
forprime(p=2, 1e3, if(p%4-3, print1(do(p)", "))) \\ Charles R Greathouse IV, Sep 26 2013
CROSSREFS
Cf. A002330, A002313, A002144, A027862 (locates y=x+1).
KEYWORD
nonn
AUTHOR
STATUS
approved
A002973 a(n) is half of the even member of {x,y}, where x^2 + y^2 is the n-th prime of the form 4i+1.
(Formerly M0135)
+10
15
1, 1, 2, 1, 3, 2, 1, 3, 4, 4, 2, 5, 5, 4, 2, 5, 3, 1, 5, 6, 7, 1, 4, 2, 8, 5, 7, 8, 1, 6, 7, 8, 9, 4, 9, 5, 3, 10, 10, 7, 6, 10, 2, 5, 11, 10, 5, 7, 10, 12, 4, 12, 9, 8, 2, 11, 3, 6, 13, 13, 11, 1, 13, 10, 6, 11, 13, 14, 7, 5, 9, 2, 3, 8, 10, 12, 5, 14, 2, 3, 14, 11, 15, 16, 16, 5, 15, 1, 8, 11 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
COMMENTS
a(n) is odd iff x^2 + y^2 == 5 (mod 8). [Vladimir Shevelev, Jul 12 2009]
A002972(n)^2 + 4*a(n)^2 = A002144(n); A002331(n+1) = Min(A002972(n),2*a(n)) and A002330(n+1) = Max(A002972(n),2*a(n)). [Reinhard Zumkeller, Feb 16 2010]
REFERENCES
E. Kogbetliantz and A. Krikorian, Handbook of First Complex Prime Numbers, Gordon and Breach, NY, 1971, p. 243.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Rainer Rosenthal, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
S. R. Finch, Powers of Euler's q-Series, arXiv:math/0701251 [math.NT], 2007.
E. Kogbetliantz and A. Krikorian, Handbook of First Complex Prime Numbers, Gordon and Breach, NY, 1971. [Annotated scans of a few pages]
FORMULA
a(n) = Min(A173331(n), A002144(n) - A173331(n)) / 2. [Reinhard Zumkeller, Feb 16 2010]
EXAMPLE
The 3rd prime of the form 4i+1 is 17 = 1^2 + 4^2, so a(3) = 4/2 = 2.
MATHEMATICA
pmax = 1000; k[p_] := Module[{k, m}, k /. ToRules[Reduce[k>0 && m >= 0 && (2k)^2 + (2m+1)^2 == p, {k, m}, Integers]]]; For[n=1; p=5, p<pmax, p = NextPrime[p], If[Mod[p, 4]==1, a[n] = k[p]; Print["a(", n, ") = ", a[n]]; n++]]; Array[a, n-1] (* Jean-François Alcover, Feb 26 2016 *)
PROG
(PARI) \\ use function decomp2sq from A002972
forprime (p=5, 1000, if (p%4==1, print1(select(x->!(x%2), decomp2sq(p))[1]/2, ", "))) \\ Hugo Pfoertner, Aug 27 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Better description from Jud McCranie, Mar 05 2003
STATUS
approved
A095978 Number of solutions to y^2=x^3+x (mod p) as p runs through the primes. +10
5
2, 3, 3, 7, 11, 19, 15, 19, 23, 19, 31, 35, 31, 43, 47, 67, 59, 51, 67, 71, 79, 79, 83, 79, 79, 99, 103, 107, 115, 127, 127, 131, 159, 139, 163, 151, 179, 163, 167, 147, 179, 163, 191, 207, 195, 199, 211, 223, 227, 259, 207, 239, 271, 251, 255, 263 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
The only rational solution of y^2 = x^3 + x is (y, x) = (0, 0). See the Silverman reference, Theorem 44.1 with a proof on pp. 388 - 390 (in the 4th edition, 2014, Theorem 1, pp. 354 - 356). - Wolfdieter Lang, Feb 08 2016
This is also the number of solutions to y^2 = x^3 - 4*x (mod p) as p runs through the primes. - Seiichi Manyama, Sep 16 2016
REFERENCES
J. H. Silverman, A Friendly Introduction to Number Theory, 3rd ed., Pearson Education, Inc, 2006, Theorem 45.1 on p. 399. In the 4th edition, 2014, Theorem 1 on p. 365.
LINKS
FORMULA
a(1) = 2; if prime(n) == 3 (mod 4) then a(n) = prime(n); if prime(n) = A002144(m) then if A002972(m) == 1 (mod 4) then a(n) = prime(n) - 2*A002972(m), otherwise a(n) = prime(n) + 2*A002972(m).
EXAMPLE
n = 21: prime(21) = A000040(21) = 73 = A002144(9) == 1 (mod 4), A002972(9) = 3 == 3 (mod 4) (not 1 (mod 4)), a(n) = 73 + 2*3 = 79.
n = 22: prime(22) = A000040(22) = 79 == 3 (mod 4), a(n) = prime(22) = 79.
MAPLE
a:= proc(n)
local p, xy, x;
p:= ithprime(n);
if p mod 4 = 3 then return p fi;
xy:= [Re, Im](GaussInt:-GIfactors(p)[2][1][1]);
x:= op(select(type, xy, odd));
if x mod 4 = 1 then p - 2*x else p + 2*x fi
end proc:
a(1):= 2:
map(a, [$1..100]); # Robert Israel, Feb 09 2016
MATHEMATICA
a[n_] := Module[{p, xy, x}, p = Prime[n]; If[Mod[p, 4]==3, Return[p]]; xy = {Re[#], Im[#]}& @ FactorInteger[p, GaussianIntegers -> True][[2, 1]]; x = SelectFirst[xy, OddQ]; If[Mod[x, 4]==1, p - 2*x, p + 2*x]]; a[1] = 2; Array[a, 100] (* Jean-François Alcover, Feb 26 2016, after Robert Israel*)
CROSSREFS
KEYWORD
nonn
AUTHOR
Lekraj Beedassy, Jul 16 2004
EXTENSIONS
Edited. Update of reference, formula corrected, examples given, and a(21) - a(56) from Wolfdieter Lang, Feb 06 2016
STATUS
approved
A173330 First of two intermediate sequences for integral solution of A002144(n)=x^2+y^2. +10
4
1, 10, 1, 5, 1, 5, 46, 5, 70, 5, 9, 1, 106, 106, 126, 142, 146, 13, 9, 186, 1, 214, 13, 226, 1, 13, 9, 5, 17, 13, 306, 9, 5, 17, 366, 17, 378, 1, 406, 406, 17, 442, 21, 442, 5, 510, 21, 538, 13, 1, 570, 5, 17, 598, 25, 13, 25, 650, 1, 5, 694, 706, 9, 742, 25, 17, 786, 5, 25 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
A002972(n) = MIN(a(n), A002144(n) - a(n)).
REFERENCES
H. Davenport, The Higher Arithmetic (Cambridge University Press 7th ed., 1999), ch. V.3, p.122.
LINKS
FORMULA
a(n) = (2k)! / 2(k!)^2 mod p, where p = 4*k+1 = A002144(n).
EXAMPLE
n=7: A002144(7) = 53 = 4*13 + 1,
a(7) = 26! / (2*(13!)^2) mod 53 = 403291461126605635584000000/77551576087265280000 mod 53 = 5200300 mod 53 = 46,
A002972(7) = MIN(46, 53 - 46) = 7;
n=8: A002144(8) = 61 = 4*15 + 1,
a(8) = 30! / (2*(15!)^2) mod 61 = 265252859812191058636308480000000/3420024505448398848000000 mod 61 = 77558760 mod 61 = 5,
A002972(8) = MIN(5, 61 - 5) = 5.
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Feb 16 2010
STATUS
approved
page 1 2

Search completed in 0.015 seconds

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 26 07:40 EDT 2024. Contains 375454 sequences. (Running on oeis4.)