login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Search: a015445 -id:a015445
Displaying 1-10 of 18 results found. page 1 2
     Sort: relevance | references | number | modified | created      Format: long | short | data
A109466 Riordan array (1, x(1-x)). +10
53
1, 0, 1, 0, -1, 1, 0, 0, -2, 1, 0, 0, 1, -3, 1, 0, 0, 0, 3, -4, 1, 0, 0, 0, -1, 6, -5, 1, 0, 0, 0, 0, -4, 10, -6, 1, 0, 0, 0, 0, 1, -10, 15, -7, 1, 0, 0, 0, 0, 0, 5, -20, 21, -8, 1, 0, 0, 0, 0, 0, -1, 15, -35, 28, -9, 1, 0, 0, 0, 0, 0, 0, -6, 35, -56, 36, -10, 1, 0, 0, 0, 0, 0, 0, 1, -21, 70, -84, 45, -11, 1, 0, 0, 0, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,9
COMMENTS
Inverse is Riordan array (1, xc(x)) (A106566).
Triangle T(n,k), 0 <= k <= n, read by rows, given by [0, -1, 1, 0, 0, 0, 0, 0, 0, ...] DELTA [1, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938.
Modulo 2, this sequence gives A106344. - Philippe Deléham, Dec 18 2008
Coefficient array of the polynomials Chebyshev_U(n, sqrt(x)/2)*(sqrt(x))^n. - Paul Barry, Sep 28 2009
LINKS
Paul Barry, Embedding structures associated with Riordan arrays and moment matrices, arXiv preprint arXiv:1312.0583 [math.CO], 2013.
FORMULA
Number triangle T(n, k) = (-1)^(n-k)*binomial(k, n-k).
T(n, k)*2^(n-k) = A110509(n, k); T(n, k)*3^(n-k) = A110517(n, k).
Sum_{k=0..n} T(n,k)*A000108(k)=1. - Philippe Deléham, Jun 11 2007
From Philippe Deléham, Oct 30 2008: (Start)
Sum_{k=0..n} T(n,k)*A144706(k) = A082505(n+1).
Sum_{k=0..n} T(n,k)*A002450(k) = A100335(n).
Sum_{k=0..n} T(n,k)*A001906(k) = A100334(n).
Sum_{k=0..n} T(n,k)*A015565(k) = A099322(n).
Sum_{k=0..n} T(n,k)*A003462(k) = A106233(n). (End)
Sum_{k=0..n} T(n,k)*x^(n-k) = A053404(n), A015447(n), A015446(n), A015445(n), A015443(n), A015442(n), A015441(n), A015440(n), A006131(n), A006130(n), A001045(n+1), A000045(n+1), A000012(n), A010892(n), A107920(n+1), A106852(n), A106853(n), A106854(n), A145934(n), A145976(n), A145978(n), A146078(n), A146080(n), A146083(n), A146084(n) for x = -12,-11,-10,-9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,11,12 respectively. - Philippe Deléham, Oct 27 2008
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A010892(n), A099087(n), A057083(n), A001787(n+1), A030191(n), A030192(n), A030240(n), A057084(n), A057085(n+1), A057086(n) for x = 0,1,2,3,4,5,6,7,8,9,10 respectively. - Philippe Deléham, Oct 28 2008
G.f.: 1/(1-y*x+y*x^2). - Philippe Deléham, Dec 15 2011
T(n,k) = T(n-1,k-1) - T(n-2,k-1), T(n,0) = 0^n. - Philippe Deléham, Feb 15 2012
Sum_{k=0..n} T(n,k)*x^(n-k) = F(n+1,-x) where F(n,x)is the n-th Fibonacci polynomial in x defined in A011973. - Philippe Deléham, Feb 22 2013
Sum_{k=0..n} T(n,k)^2 = A051286(n). - Philippe Deléham, Feb 26 2013
Sum_{k=0..n} T(n,k)*T(n+1,k) = -A110320(n). - Philippe Deléham, Feb 26 2013
For T(0,0) = 0, the signed triangle below has the o.g.f. G(x,t) = [t*x(1-x)]/[1-t*x(1-x)] = L[t*Cinv(x)] where L(x) = x/(1-x) and Cinv(x)=x(1-x) with the inverses Linv(x) = x/(1+x) and C(x)= [1-sqrt(1-4*x)]/2, an o.g.f. for the shifted Catalan numbers A000108, so the inverse o.g.f. is Ginv(x,t) = C[Linv(x)/t] = [1-sqrt[1-4*x/(t(1+x))]]/2 (cf. A124644 and A030528). - Tom Copeland, Jan 19 2016
EXAMPLE
Rows begin:
1;
0, 1;
0, -1, 1;
0, 0, -2, 1;
0, 0, 1, -3, 1;
0, 0, 0, 3, -4, 1;
0, 0, 0, -1, 6, -5, 1;
0, 0, 0, 0, -4, 10, -6, 1;
0, 0, 0, 0, 1, -10, 15, -7, 1;
0, 0, 0, 0, 0, 5, -20, 21, -8, 1;
0, 0, 0, 0, 0, -1, 15, -35, 28, -9, 1;
From Paul Barry, Sep 28 2009: (Start)
Production array is
0, 1,
0, -1, 1,
0, -1, -1, 1,
0, -2, -1, -1, 1,
0, -5, -2, -1, -1, 1,
0, -14, -5, -2, -1, -1, 1,
0, -42, -14, -5, -2, -1, -1, 1,
0, -132, -42, -14, -5, -2, -1, -1, 1,
0, -429, -132, -42, -14, -5, -2, -1, -1, 1 (End)
MATHEMATICA
(* The function RiordanArray is defined in A256893. *)
RiordanArray[1&, #(1-#)&, 13] // Flatten (* Jean-François Alcover, Jul 16 2019 *)
PROG
(Magma) /* As triangle */ [[(-1)^(n-k)*Binomial(k, n-k): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Jan 14 2016
CROSSREFS
Cf. A026729 (unsigned version), A000108, A030528, A124644.
KEYWORD
easy,sign,tabl
AUTHOR
Philippe Deléham, Aug 28 2005
STATUS
approved
A168561 Riordan array (1/(1-x^2), x/(1-x^2)). Unsigned version of A049310. +10
28
1, 0, 1, 1, 0, 1, 0, 2, 0, 1, 1, 0, 3, 0, 1, 0, 3, 0, 4, 0, 1, 1, 0, 6, 0, 5, 0, 1, 0, 4, 0, 10, 0, 6, 0, 1, 1, 0, 10, 0, 15, 0, 7, 0, 1, 0, 5, 0, 20, 0, 21, 0, 8, 0, 1, 1, 0, 15, 0, 35, 0, 28, 0, 9, 0, 1, 0, 6, 0, 35, 0, 56, 0, 36, 0, 10, 0, 1, 1, 0, 21, 0, 70, 0, 84, 0, 45, 0, 11, 0, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,8
COMMENTS
Row sums: A000045(n+1), Fibonacci numbers.
A168561*A007318 = A037027, as lower triangular matrices. Diagonal sums : A077957. - Philippe Deléham, Dec 02 2009
T(n,k) is the number of compositions of n+1 into k+1 odd parts. Example: T(4,2)=3 because we have 5 = 1+1+3 = 1+3+1 = 3+1+1.
Coefficients of monic Fibonacci polynomials (rising powers of x). Ftilde(n, x) = x*Ftilde(n-1, x) + Ftilde(n-2, x), n >=0, Ftilde(-1,x) = 0, Ftilde(0, x) = 1. G.f.: 1/(1 - x*z - z^2). Compare with Chebyshev S-polynomials (A049310). - Wolfdieter Lang, Jul 29 2014
LINKS
J.P. Allouche and M. Mendès-France, Stern-Brocot polynomials and power series, arXiv preprint arXiv:1202.0211 [math.NT], 2012. - From N. J. A. Sloane, May 10 2012
Milan Janjić, Words and Linear Recurrences, J. Int. Seq. 21 (2018), #18.1.4.
FORMULA
Sum_{k=0..n} T(n,k)*x^k = A059841(n), A000045(n+1), A000129(n+1), A006190(n+1), A001076(n+1), A052918(n), A005668(n+1), A054413(n), A041025(n), A099371(n+1), A041041(n), A049666(n+1), A041061(n), A140455(n+1), A041085(n), A154597(n+1), A041113(n) for x = 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16 respectively. - Philippe Deléham, Dec 02 2009
T(2n,2k) = A085478(n,k). T(2n+1,2k+1) = A078812(n,k). Sum_{k=0..n} T(n,k)*x^(n-k) = A000012(n), A000045(n+1), A006131(n), A015445(n), A168579(n), A122999(n) for x = 0,1,2,3,4,5 respectively. - Philippe Deléham, Dec 02 2009
T(n,k) = binomial((n+k)/2,k) if (n+k) is even; otherwise T(n,k)=0.
G.f.: (1-z^2)/(1-t*z-z^2) if offset is 1.
T(n,k) = T(n-1,k-1) + T(n-2,k), T(0,0) = 1, T(0,1) = 0. - Philippe Deléham, Feb 09 2012
Sum_{k=0..n} T(n,k)^2 = A051286(n). - Philippe Deléham, Feb 09 2012
Sum_{k=0..n} T(n,k)*k = A001629(n+1). - R. J. Mathar, Feb 04 2022
Sum_{k=0..n} T(n,k)*k^2= 0,1,4,11,... = 2*A055243(n)-A099920(n+1). - R. J. Mathar, Feb 04 2022
Sum_{k=0..n) T(n,k)*k^3 = 0,1,8,29,88,236,... = 12*A055243(n) -6*A001629(n+2) +A001629(n+1)-6*(A001872(n)-2*A001872(n-1)). - R. J. Mathar, Feb 04 2022
EXAMPLE
The triangle T(n,k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...
0: 1
1: 0 1
2: 1 0 1
3: 0 2 0 1
4: 1 0 3 0 1
5: 0 3 0 4 0 1
6: 1 0 6 0 5 0 1
7: 0 4 0 10 0 6 0 1
8: 1 0 10 0 15 0 7 0 1
9: 0 5 0 20 0 21 0 8 0 1
10: 1 0 15 0 35 0 28 0 9 0 1
11: 0 6 0 35 0 56 0 36 0 10 0 1
12: 1 0 21 0 70 0 84 0 45 0 11 0 1
13: 0 7 0 56 0 126 0 120 0 55 0 12 0 1
14: 1 0 28 0 126 0 210 0 165 0 66 0 13 0 1
15: 0 8 0 84 0 252 0 330 0 220 0 78 0 14 0 1
... reformatted by Wolfdieter Lang, Jul 29 2014.
------------------------------------------------------------------------
MAPLE
A168561:=proc(n, k) if n-k mod 2 = 0 then binomial((n+k)/2, k) else 0 fi end proc:
seq(seq(A168561(n, k), k=0..n), n=0..12) ; # yields sequence in triangular form
MATHEMATICA
Table[If[EvenQ[n + k], Binomial[(n + k)/2, k], 0], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, Apr 16 2017 *)
PROG
(PARI) T(n, k) = if ((n+k) % 2, 0, binomial((n+k)/2, k));
tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", ")); print(); ); \\ Michel Marcus, Oct 09 2016
CROSSREFS
Cf. A162515 (rows reversed), A112552, A102426 (deflated).
KEYWORD
easy,nonn,tabl
AUTHOR
Philippe Deléham, Nov 29 2009
EXTENSIONS
Typo in name corrected (1(1-x^2) changed to 1/(1-x^2)) by Wolfdieter Lang, Nov 20 2010
STATUS
approved
A002534 a(n) = 2*a(n-1) + 9*a(n-2), with a(0) = 0, a(1) = 1.
(Formerly M2058 N0814)
+10
21
0, 1, 2, 13, 44, 205, 806, 3457, 14168, 59449, 246410, 1027861, 4273412, 17797573, 74055854, 308289865, 1283082416, 5340773617, 22229288978, 92525540509, 385114681820, 1602959228221, 6671950592822, 27770534239633, 115588623814664 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
For n>=2, a(n) equals the permanent of the (n-1)X(n-1) tridiagonal matrix with 2's along the main diagonal, and 3's along the superdiagonal and the subdiagonal. - John M. Campbell, Jul 19 2011
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
A. Tarn, Approximations to certain square roots and the series of numbers connected therewith, Mathematical Questions and Solutions from the Educational Times, 1 (1916), 8-12.
LINKS
J. Borowska and L. Lacinska, Recurrence form of determinant of a heptadiagonal symmetric Toeplitz matrix, J. Appl. Math. Comp. Mech. 13 (2014) 19-16, remark 2 for permanent of tridiagonal Toeplitz matrices a=2, b=3.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
FORMULA
From Paul Barry, Sep 29 2004: (Start)
E.g.f.: exp(x)*sinh(sqrt(10)*x)/sqrt(10).
a(n) = Sum_{k=0..n} binomial(n, 2*k+1)*10^k. (End)
a(n) = ((1+sqrt(10))^n - (1-sqrt(10))^n)/(2*sqrt(10)). - Artur Jasinski, Dec 10 2006
G.f.: x/(1 - 2*x - 9*x^2) - Iain Fox, Jan 17 2018
From G. C. Greubel, Jan 03 2024: (Start)
a(n) = (3*i)^(n-1)*ChebyshevU(n-1, -i/3).
a(n) = 3^(n-1)*Fibonacci(n, 2/3), where Fibonacci(n, x) is the Fibonacci polynomial. (End)
MAPLE
A002534:=-z/(-1+2*z+9*z**2); # [Simon Plouffe in his 1992 dissertation.]
MATHEMATICA
Table[((1 + Sqrt[10])^n - (1 - Sqrt[10])^n)/(2 Sqrt[10]), {n, 0, 30}]] (* Artur Jasinski, Dec 10 2006 *)
LinearRecurrence[{2, 9}, {0, 1}, 30] (* T. D. Noe, Aug 18 2011 *)
PROG
(Sage) [lucas_number1(n, 2, -9) for n in range(0, 20)] # Zerinvary Lajos, Apr 22 2009
(Magma) [Ceiling(((1+Sqrt(10))^n-(1-Sqrt(10))^n)/(2*Sqrt(10))): n in [0..30]]; // Vincenzo Librandi, Aug 15 2011
(PARI) first(n) = Vec(x/(1 - 2*x - 9*x^2) + O(x^n), -n) \\ Iain Fox, Jan 17 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from Johannes W. Meijer, Aug 18 2011
STATUS
approved
A057089 Scaled Chebyshev U-polynomials evaluated at i*sqrt(6)/2. Generalized Fibonacci sequence. +10
15
1, 6, 42, 288, 1980, 13608, 93528, 642816, 4418064, 30365280, 208700064, 1434392064, 9858552768, 67757668992, 465697330560, 3200729997312, 21998563967232, 151195763787264, 1039165966526976, 7142170381885440 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
a(n) gives the length of the word obtained after n steps with the substitution rule 0->1^6, 1->(1^6)0, starting from 0. The number of 1's and 0's of this word is 6*a(n-1) and 6*a(n-2), resp.
LINKS
Martin Burtscher, Igor Szczyrba, and Rafał Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
A. F. Horadam, Special properties of the sequence W_n(a,b; p,q), Fib. Quart., 5.5 (1967), 424-434. Case n->n+1, a=0,b=1; p=6, q=6.
Tanya Khovanova, Recursive Sequences
Wolfdieter Lang, On polynomials related to powers of the generating function of Catalan's numbers, Fib. Quart. 38 (2000) 408-419. Eqs.(39) and (45),rhs, m=6.
FORMULA
a(n) = 6*a(n-1) + 6*a(n-2); a(0)=1, a(1)=6.
a(n) = S(n, i*sqrt(6))*(-i*sqrt(6))^n with S(n, x) := U(n, x/2), Chebyshev's polynomials of the 2nd kind, A049310.
G.f.: 1/(1-6*x-6*x^2).
a(n) = Sum_{k=0..n} 5^k*A063967(n,k). - Philippe Deléham, Nov 03 2006
MATHEMATICA
Join[{a=0, b=1}, Table[c=6*b+6*a; a=b; b=c, {n, 100}]] (* Vladimir Joseph Stephan Orlovsky, Jan 16 2011 *)
LinearRecurrence[{6, 6}, {1, 6}, 40] (* Harvey P. Dale, Nov 05 2011 *)
PROG
(Sage) [lucas_number1(n, 6, -6) for n in range(1, 21)] # Zerinvary Lajos, Apr 24 2009
(Magma) I:=[1, 6]; [n le 2 select I[n] else 6*Self(n-1)+6*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 14 2011
(PARI) x='x+O('x^30); Vec(1/(1-6*x-6*x^2)) \\ G. C. Greubel, Jan 24 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Aug 11 2000
STATUS
approved
A111006 Another version of Fibonacci-Pascal triangle A037027. +10
15
1, 0, 1, 0, 1, 2, 0, 0, 2, 3, 0, 0, 1, 5, 5, 0, 0, 0, 3, 10, 8, 0, 0, 0, 1, 9, 20, 13, 0, 0, 0, 0, 4, 22, 38, 21, 0, 0, 0, 0, 1, 14, 51, 71, 34, 0, 0, 0, 0, 0, 5, 40, 111, 130, 55, 0, 0, 0, 0, 0, 1, 20, 105, 233, 235, 89, 0, 0, 0, 0, 0, 0, 6, 65, 256, 474, 420, 144 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,6
COMMENTS
Triangle T(n,k), 0 <= k <= n, read by rows, given by [0, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...] DELTA [1, 1, -1, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938.
Row sums are the Jacobsthal numbers A001045(n+1) and column sums form Pell numbers A000129.
Maximal column entries: A038149 = {1, 1, 2, 5, 10, 22, ...}.
T(n,k) gives a convolved Fibonacci sequence (A001629, A001872, ...).
Triangle read by rows: T(n,n-k) is the number of ways to tile a 2 X n rectangle with k pieces of 2 X 2 tiles and n-2k pieces of 1 X 2 tiles (0 <= k <= floor(n/2)). - Philippe Deléham, Feb 17 2014
Diagonal sums are A013979(n). - Philippe Deléham, Feb 17 2014
T(n,k) is the number of ways to tile a 2 X n rectangle with k pieces of 2 X 2 tiles and 1 X 2 tiles. - Emeric Deutsch, Aug 14 2014
LINKS
FORMULA
T(0, 0) = 1, T(n, k) = 0 for k < 0 or for n < k, T(n, k) = T(n-1, k-1) + T(n-2, k-1) + T(n-2, k-2).
T(n, k) = A037027(k, n-k). T(n, n) = A000045(n+1). T(3n, 2n) = (n+1)*A001002(n+1) = A038112(n).
G.f.: 1/(1-yx(1-x)-x^2*y^2). - Paul Barry, Oct 04 2005
Sum_{k=0..n} x^k*T(n,k) = (-1)^n*A053524(n+1), (-1)^n*A083858(n+1), (-1)^n*A002605(n), A033999(n), A000007(n), A001045(n+1), A083099(n) for x = -4, -3, -2, -1, 0, 1, 2 respectively. - Philippe Deléham, Dec 02 2006
Sum_{k=0..n} T(n,k)*x^(n-k) = A053404(n), A015447(n), A015446(n), A015445(n), A015443(n), A015442(n), A015441(n), A015440(n), A006131(n), A006130(n), A001045(n+1), A000045(n+1) for x = 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0 respectively. - Philippe Deléham, Feb 17 2014
EXAMPLE
Triangle begins:
1;
0, 1;
0, 1, 2;
0, 0, 2, 3;
0, 0, 1, 5, 5;
0, 0, 0, 3, 10, 8;
0, 0, 0, 1, 9, 20, 13;
0, 0, 0, 0, 4, 22, 38, 21;
0, 0, 0, 0, 1, 14, 51, 71, 34;
0, 0, 0, 0, 0, 5, 40, 111, 130, 55;
0, 0, 0, 0, 0, 1, 20, 105, 233, 235, 89;
0, 0, 0, 0, 0, 0, 6, 65, 256, 474, 420, 144;
PROG
(Haskell)
a111006 n k = a111006_tabl !! n !! k
a111006_row n = a111006_tabl !! n
a111006_tabl = map fst $ iterate (\(us, vs) ->
(vs, zipWith (+) (zipWith (+) ([0] ++ us ++ [0]) ([0, 0] ++ us))
([0] ++ vs))) ([1], [0, 1])
-- Reinhard Zumkeller, Aug 15 2013
CROSSREFS
Cf. A000045, A000129, A001045, A037027, A038112, A038149, A084938, A128100 (reversed version).
Some other Fibonacci-Pascal triangles: A027926, A036355, A037027, A074829, A105809, A109906, A114197, A162741, A228074.
KEYWORD
easy,nonn,tabl
AUTHOR
Philippe Deléham, Oct 02 2005
STATUS
approved
A135030 Generalized Fibonacci numbers: a(n) = 6*a(n-1) + 2*a(n-2). +10
9
0, 1, 6, 38, 240, 1516, 9576, 60488, 382080, 2413456, 15244896, 96296288, 608267520, 3842197696, 24269721216, 153302722688, 968355778560, 6116740116736, 38637152257536, 244056393778688, 1541612667187200 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
For n>0, a(n) equals the number of words of length n-1 over {0,1,...,7} in which 0 and 1 avoid runs of odd lengths. - Milan Janjic, Jan 08 2017
LINKS
Joshua Zucker and Robert Israel, Table of n, a(n) for n = 0..1000 (n=0..51 from Joshua Zucker).
FORMULA
a(0) = 0; a(1) = 1; a(n) = 2*(3*a(n-1) + a(n-2)).
a(n) = 1/(2*sqrt(11))*( (3 + sqrt(11))^n - (3 - sqrt(11))^n ).
G.f.: x/(1 - 6*x - 2*x^2). - Harvey P. Dale, Jun 20 2011
a(n+1) = Sum_{k=0..n} A099097(n,k)*2^k. - Philippe Deléham, Sep 16 2014
E.g.f.: (1/sqrt(11))*exp(3*x)*sinh(sqrt(11)*x). - G. C. Greubel, Sep 17 2016
MAPLE
A:= gfun:-rectoproc({a(0) = 0, a(1) = 1, a(n) = 2*(3*a(n-1) + a(n-2))}, a(n), remember):
seq(A(n), n=1..30); # Robert Israel, Sep 16 2014
MATHEMATICA
Join[{a=0, b=1}, Table[c=6*b+2*a; a=b; b=c, {n, 100}]] (* Vladimir Joseph Stephan Orlovsky, Jan 16 2011 *)
LinearRecurrence[{6, 2}, {0, 1}, 30] (* or *) CoefficientList[Series[ -(x/(2x^2+6x-1)), {x, 0, 30}], x] (* Harvey P. Dale, Jun 20 2011 *)
PROG
(Sage) [lucas_number1(n, 6, -2) for n in range(0, 21)] # Zerinvary Lajos, Apr 24 2009
(Magma) [n le 2 select n-1 else 6*Self(n-1) + 2*Self(n-2): n in [1..35]]; // Vincenzo Librandi, Sep 18 2016
(PARI) a(n)=([0, 1; 2, 6]^n*[0; 1])[1, 1] \\ Charles R Greathouse IV, Oct 03 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Rolf Pleisch, Feb 10 2008, Feb 14 2008
EXTENSIONS
More terms from Joshua Zucker, Feb 23 2008
STATUS
approved
A083856 Square array T(n,k) of generalized Fibonacci numbers, read by antidiagonals upwards (n, k >= 0). +10
8
0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 3, 3, 1, 0, 1, 1, 4, 5, 5, 1, 0, 1, 1, 5, 7, 11, 8, 1, 0, 1, 1, 6, 9, 19, 21, 13, 1, 0, 1, 1, 7, 11, 29, 40, 43, 21, 1, 0, 1, 1, 8, 13, 41, 65, 97, 85, 34, 1, 0, 1, 1, 9, 15, 55, 96, 181, 217, 171, 55, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,14
COMMENTS
Row n >= 0 of the array gives the solution to the recurrence b(k) = b(k-1) + n*b(k-2) for k >= 2 with b(0) = 0 and b(1) = 1.
LINKS
A. G. Shannon and J. V. Leyendekkers, The Golden Ratio family and the Binet equation, Notes on Number Theory and Discrete Mathematics, 21(2) (2015), 35-42.
FORMULA
T(n, k) = (((1 + sqrt(4*n + 1))/2)^k - ((1 - sqrt(4*n + 1))/2)^k)/sqrt(4*n + 1). [corrected by Michel Marcus, Jun 25 2018]
From Thomas Baruchel, Jun 25 2018: (Start)
The g.f. for row n >= 0 is x/(1 - x - n*x^2).
The g.f. for column k >= 1 is g(k,x) = 1/(1-x) + Sum_{m = 1..floor((k-1)/2)} (1 - x)^(-1 - m) * binomial(k - 1 - m, m) * Sum_{i = 0..m} x^i * Sum_{j = 0..i} (-1)^j * (i - j)^m * binomial(1 + m, j).
The g.f. for column k >= 1 is also g(k,x) = 1 + Sum_{m = 1..floor((k+1)/2)} ((1 - x)^(-m) * binomial(k-m, m-1) * Sum_{j = 0..m} (-1)^j * binomial(m, j) * x^m * Phi(x, -m+1, -j+m)) + Sum_{s = 0..floor((k-1)/2)} binomial(k-s-1, s) * PolyLog(-s, x), where Phi is the Lerch transcendent function. (End)
T(n,k) = Sum_{i = 0..k} (-1)^(k+i) * binomial(k,i) * A083857(n,i). - Petros Hadjicostas, Dec 24 2019
EXAMPLE
Array T(n,k) (with rows n >= 0 and columns k >= 0) begins as follows:
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... [A057427]
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ... [A000045]
0, 1, 1, 3, 5, 11, 21, 43, 85, 171, ... [A001045]
0, 1, 1, 4, 7, 19, 40, 97, 217, 508, ... [A006130]
0, 1, 1, 5, 9, 29, 65, 181, 441, 1165, ... [A006131]
0, 1, 1, 6, 11, 41, 96, 301, 781, 2286, ... [A015440]
0, 1, 1, 7, 13, 55, 133, 463, 1261, 4039, ... [A015441]
0, 1, 1, 8, 15, 71, 176, 673, 1905, 6616, ... [A015442]
0, 1, 1, 9, 17, 89, 225, 937, 2737, 10233, ... [A015443]
0, 1, 1, 10, 19, 109, 280, 1261, 3781, 15130, ... [A015445]
...
MAPLE
A083856_row := proc(r, n) local R; R := proc(n) option remember;
if n<=1 then n else R(n-1)+r*R(n-2) fi end: R(n) end:
for r from 0 to 9 do seq(A083856_row(r, n), n=0..9) od; # Peter Luschny, Mar 06 2017
MATHEMATICA
T[_, 0] = 0; T[_, 1|2] = 1; T[n_, k_] := T[n, k] = T[n, k-1] + n T[n, k-2];
Table[T[n-k, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 22 2018 *)
PROG
(Julia)
function generalized_fibonacci(r, n)
F = BigInt[1 r; 1 0]
Fn = F^n
Fn[2, 1]
end
for r in 0:6 println([generalized_fibonacci(r, n) for n in 0:9]) end # Peter Luschny, Mar 06 2017
CROSSREFS
Rows include A057427 (n=0), A000045 (n=1), A001045 (n=2), A006130 (n=3), A006131 (n=4), A015440 (n=5), A015441 (n=6), A015442 (n=7), A015443 (n=8), A015445 (n=9).
Columns include A000012 (k=1,2), A000027 (k=3), A005408 (k=4), A028387 (k=5), A000567 (k=6), A106734 (k=7).
Cf. A083857 (binomial transform), A083859 (main diagonal), A083860 (first subdiagonal), A083861 (second binomial transform), A110112, A110113 (diagonal sums), A193376 (transposed variant), A172237 (transposed variant).
KEYWORD
nonn,tabl,easy
AUTHOR
Paul Barry, May 06 2003
EXTENSIONS
Various sections edited by Petros Hadjicostas, Dec 24 2019
STATUS
approved
A180250 a(n) = 5*a(n-1) + 10*a(n-2), with a(1)=0 and a(2)=1. +10
7
0, 1, 5, 35, 225, 1475, 9625, 62875, 410625, 2681875, 17515625, 114396875, 747140625, 4879671875, 31869765625, 208145546875, 1359425390625, 8878582421875, 57987166015625, 378721654296875, 2473479931640625, 16154616201171875, 105507880322265625 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
LINKS
FORMULA
a(n) = ((5+sqrt(65))^(n-1) - (5-sqrt(65))^(n-1))/(2^(n-1)*sqrt(65)). - Rolf Pleisch, May 14 2011
G.f.: x^2/(1-5*x-10*x^2).
a(n) = (i*sqrt(10))^(n-1) * ChebyshevU(n-1, -i*sqrt(5/8)). - G. C. Greubel, Jul 21 2023
MATHEMATICA
Join[{a=0, b=1}, Table[c=5*b+10*a; a=b; b=c, {n, 100}]]
LinearRecurrence[{5, 10}, {0, 1}, 30] (* G. C. Greubel, Jan 16 2018 *)
PROG
(PARI) a(n)=([0, 1; 10, 5]^(n-1))[1, 2] \\ Charles R Greathouse IV, Oct 03 2016
(PARI) my(x='x+O('x^30)); concat([0], Vec(x^2/(1-5*x-10*x^2))) \\ G. C. Greubel, Jan 16 2018
(Magma) [n le 2 select n-1 else 5*Self(n-1) +10*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 16 2018
(SageMath)
A180250= BinaryRecurrenceSequence(5, 10, 0, 1)
[A180250(n-1) for n in range(1, 41)] # G. C. Greubel, Jul 21 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved
A015551 Expansion of x/(1 - 6*x - 5*x^2). +10
6
0, 1, 6, 41, 276, 1861, 12546, 84581, 570216, 3844201, 25916286, 174718721, 1177893756, 7940956141, 53535205626, 360916014461, 2433172114896, 16403612761681, 110587537144566, 745543286675801, 5026197405777636 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Let the generator matrix for the ternary Golay G_12 code be [I|B], where the elements of B are taken from the set {0,1,2}. Then a(n)=(B^n)_1,2 for instance. - Paul Barry, Feb 13 2004
Pisano period lengths: 1, 2, 4, 4, 1, 4, 42, 8, 12, 2, 10, 4, 12, 42, 4, 16, 96, 12, 360, 4, ... - R. J. Mathar, Aug 10 2012
LINKS
Lucyna Trojnar-Spelina, Iwona Włoch, On Generalized Pell and Pell-Lucas Numbers, Iranian Journal of Science and Technology, Transactions A: Science (2019), 1-7.
FORMULA
a(n) = 6*a(n-1) + 5*a(n-2).
a(n) = sqrt(14)*(3+sqrt(14))^n/28 - sqrt(14)*(3-sqrt(14))^n/28. - Paul Barry, Feb 13 2004
MATHEMATICA
Join[{a=0, b=1}, Table[c=6*b+5*a; a=b; b=c, {n, 100}]] (* Vladimir Joseph Stephan Orlovsky, Jan 16 2011 *)
CoefficientList[Series[x/(1-6x-5x^2), {x, 0, 20}], x] (* or *) LinearRecurrence[ {6, 5}, {0, 1}, 30] (* Harvey P. Dale, Oct 30 2017 *)
PROG
(Sage) [lucas_number1(n, 6, -5) for n in range(0, 21)] # Zerinvary Lajos, Apr 24 2009
(Magma) I:=[0, 1]; [n le 2 select I[n] else 6*Self(n-1)+5*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 14 2011
(PARI) a(n)=([0, 1; 5, 6]^n*[0; 1])[1, 1] \\ Charles R Greathouse IV, Oct 03 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved
A193376 T(n,k) = number of ways to place any number of 2 X 1 tiles of k distinguishable colors into an n X 1 grid; array read by descending antidiagonals, with n, k >= 1. +10
6
1, 1, 2, 1, 3, 3, 1, 4, 5, 5, 1, 5, 7, 11, 8, 1, 6, 9, 19, 21, 13, 1, 7, 11, 29, 40, 43, 21, 1, 8, 13, 41, 65, 97, 85, 34, 1, 9, 15, 55, 96, 181, 217, 171, 55, 1, 10, 17, 71, 133, 301, 441, 508, 341, 89, 1, 11, 19, 89, 176, 463, 781, 1165, 1159, 683, 144, 1, 12, 21, 109, 225, 673 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,3
COMMENTS
Transposed variant of A083856. - R. J. Mathar, Aug 23 2011
As to the sequences by columns beginning (1, N, ...), let m = (N-1). The g.f. for the sequence (1, N, ...) is 1/(1 - x - m*x^2). Alternatively, the corresponding matrix generator is [[1,1], [m,0]]. Another equivalency is simply: The sequence beginning (1, N, ...) is the INVERT transform of (1, m, 0, 0, 0, ...). Convergents to the sequences a(n)/a(n-1) are (1 + sqrt(4*m+1))/2. - Gary W. Adamson, Feb 25 2014
LINKS
Ron H. Hardin, Re: A193376 Tabl = 20 existing sequences, Sequence Fans mailing list, 2011.
Robert Israel, Re: A193376 Tabl = 20 existing sequences, Sequence Fans mailing list, 2011.
FORMULA
With z X 1 tiles of k colors on an n X 1 grid (with n >= z), either there is a tile (of any of the k colors) on the first spot, followed by any configuration on the remaining (n-z) X 1 grid, or the first spot is vacant, followed by any configuration on the remaining (n-1) X 1. Thus, T(n,k) = T(n-1,k) + k*T(n-z,k), with T(n,k) = 1 for n = 0, 1, ..., z-1.
The solution is T(n,k) = Sum_r r^(-n-1)/(1 + z*k*r^(z-1)), where the sum is over the roots r of the polynomial k*x^z + x - 1.
For z = 2, T(n,k) = ((2*k / (sqrt(1 + 4*k) - 1))^(n+1) - (-2*k/(sqrt(1 + 4*k) + 1))^(n+1)) / sqrt(1 + 4*k).
T(n,k) = Sum_{s=0..[n/2]} binomial(n-s,s) * k^s.
For z X 1 tiles, T(n,k,z) = Sum_{s = 0..[n/z]} binomial(n-(z-1)*s, s) * k^s. - R. H. Hardin, Jul 31 2011
EXAMPLE
Array T(n,k) (with rows n >= 1 and column k >= 1) begins as follows:
..1...1....1....1.....1.....1.....1......1......1......1......1......1...
..2...3....4....5.....6.....7.....8......9.....10.....11.....12.....13...
..3...5....7....9....11....13....15.....17.....19.....21.....23.....25...
..5..11...19...29....41....55....71.....89....109....131....155....181...
..8..21...40...65....96...133...176....225....280....341....408....481...
.13..43...97..181...301...463...673....937...1261...1651...2113...2653...
.21..85..217..441...781..1261..1905...2737...3781...5061...6601...8425...
.34.171..508.1165..2286..4039..6616..10233..15130..21571..29844..40261...
.55.341.1159.2929..6191.11605.19951..32129..49159..72181.102455.141361...
.89.683.2683.7589.17621.35839.66263.113993.185329.287891.430739.624493...
...
Some solutions for n = 5 and k = 3 with colors = 1, 2, 3 and empty = 0:
..0....2....3....2....0....1....0....0....2....0....0....2....3....0....0....0
..0....2....3....2....2....1....2....3....2....1....0....2....3....1....1....1
..1....0....0....0....2....0....2....3....2....1....0....1....0....1....1....1
..1....2....2....0....3....2....2....3....2....0....3....1....3....3....2....1
..0....2....2....0....3....2....2....3....0....0....3....0....3....3....2....1
MAPLE
T:= proc(n, k) option remember; `if`(n<0, 0,
`if`(n<2 or k=0, 1, k*T(n-2, k) +T(n-1, k)))
end;
seq(seq(T(n, d+1-n), n=1..d), d=1..12); # Alois P. Heinz, Jul 29 2011
MATHEMATICA
T[n_, k_] := T[n, k] = If[n < 0, 0, If[n < 2 || k == 0, 1, k*T[n-2, k]+T[n-1, k]]]; Table[Table[T[n, d+1-n], {n, 1, d}], {d, 1, 12}] // Flatten (* Jean-François Alcover, Mar 04 2014, after Alois P. Heinz *)
CROSSREFS
Column 1 is A000045(n+1), column 2 is A001045(n+1), column 3 is A006130, column 4 is A006131, column 5 is A015440, column 6 is A015441(n+1), column 7 is A015442(n+1), column 8 is A015443, column 9 is A015445, column 10 is A015446, column 11 is A015447, and column 12 is A053404,
Row 2 is A000027(n+1), row 3 is A004273(n+1), row 4 is A028387, row 5 is A000567(n+1), and row 6 is A106734(n+2).
Diagonal is A171180, superdiagonal 1 is A083859(n+1), and superdiagonal 2 is A083860(n+1).
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jul 24 2011
EXTENSIONS
Formula and proof from Robert Israel in the Sequence Fans mailing list.
STATUS
approved
page 1 2

Search completed in 0.017 seconds

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 17 04:02 EDT 2024. Contains 374360 sequences. (Running on oeis4.)