login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Search: a028594 -id:a028594
Displaying 1-6 of 6 results found. page 1
     Sort: relevance | references | number | modified | created      Format: long | short | data
A205976 a(n) = Fibonacci(n)*A028594(n) for n>=1, with a(0)=1, where A028594 lists the coefficients in (theta_3(x)*theta_3(7*x)+theta_2(x)*theta_2(7*x))^2. +20
3
1, 4, 12, 32, 84, 120, 384, 52, 1260, 1768, 3960, 4272, 16128, 13048, 4524, 58560, 122388, 114984, 403104, 334480, 1136520, 175136, 2550384, 2751072, 11128320, 9303100, 20394024, 31426880, 8898708, 61707480, 239627520, 172322432, 548933868, 676718976, 1231823592 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Compare g.f. to the Lambert series of A028594:
1 + 4*Sum_{n>=1} Chi(n,7)*n*x^n/(1-x^n).
Here Chi(n,7) = principal Dirichlet character of n modulo 7.
LINKS
FORMULA
G.f.: 1 + 4*Sum_{n>=1} Fibonacci(n)*Chi(n,7)*n*x^n/(1 - Lucas(n)*x^n + (-1)^n*x^(2*n)).
EXAMPLE
G.f.: A(x) = 1 + 4*x + 12*x^2 + 32*x^3 + 84*x^4 + 120*x^5 + 384*x^6 + 52*x^7 +...
where A(x) = 1 + 1*4*x + 1*12*x^2 + 2*16*x^3 + 3*28*x^4 + 5*24*x^5 + 8*48*x^6 + 13*4*x^7 + 21*60*x^8 + 34*52*x^9 +...+ Fibonacci(n)*A028594(n)*x^n +...
The g.f. is also given by the identity:
A(x) = 1 + 4*( 1*1*x/(1-x-x^2) + 1*2*x^2/(1-3*x^2+x^4) + 2*3*x^3/(1-4*x^3-x^6) + 3*4*x^4/(1-7*x^4+x^8) + 5*5*x^5/(1-11*x^5-x^10) + 8*6*x^6/(1-18*x^6+x^12) + 0*13*7*x^7/(1+29*x^7-x^14) +...).
The values of the Dirichlet character Chi(n,7) repeat [1,1,1,1,1,1,0, ...].
PROG
(PARI) {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
{a(n)=polcoeff(1 + 4*sum(m=1, n, fibonacci(m)*kronecker(m, 7)^2*m*x^m/(1-Lucas(m)*x^m+(-1)^m*x^(2*m) +x*O(x^n))), n)}
for(n=0, 60, print1(a(n), ", "))
CROSSREFS
Cf. A028594, A205975, A203847, A000204 (Lucas).
Cf. A209456 (Pell variant).
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 04 2012
STATUS
approved
A209456 a(n) = Pell(n)*A028594(n) for n>=1, with a(0)=1, where A028594 lists the coefficients in (theta_3(x)*theta_3(7*x)+theta_2(x)*theta_2(7*x))^2. +20
3
1, 4, 24, 80, 336, 696, 3360, 676, 24480, 51220, 171216, 275568, 1552320, 1873816, 969384, 18722400, 58383168, 81841608, 428096760, 530008720, 2687063904, 617823440, 13424019552, 21605633376, 130401532800, 162655527004, 532025081616, 1223259207200 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Compare g.f. to the Lambert series of A028594:
1 + 4*Sum_{n>=1} Chi(n,7)*n*x^n/(1-x^n).
Here Chi(n,7) = principal Dirichlet character of n modulo 7.
LINKS
FORMULA
G.f.: 1 + 4*Sum_{n>=1} Pell(n)*Chi(n,7)*n*x^n/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)), where A002203(n) = Pell(n-1) + Pell(n+1).
EXAMPLE
G.f.: A(x) = 1 + 4*x + 24*x^2 + 80*x^3 + 336*x^4 + 696*x^5 + 3360*x^6 +...
where A(x) = 1 + 1*4*x + 2*12*x^2 + 5*16*x^3 + 12*28*x^4 + 29*24*x^5 + 70*48*x^6 + 169*4*x^7 + 408*60*x^8 + 985*52*x^9 +...+ Pell(n)*A028594(n)*x^n +...
The g.f. is also given by the identity:
A(x) = 1 + 4*( 1*1*x/(1-2*x-x^2) + 2*2*x^2/(1-6*x^2+x^4) + 5*3*x^3/(1-14*x^3-x^6) + 12*4*x^4/(1-34*x^4+x^8) + 29*5*x^5/(1-82*x^5-x^10) + 70*6*x^6/(1-198*x^6+x^12) + 0*169*7*x^7/(1+478*x^7-x^14) +...).
The values of the Dirichlet character Chi(n,7) repeat [1,1,1,1,1,1,0, ...].
MATHEMATICA
A028594[n_]:= If[n < 1, Boole[n == 0], 4*Sum[If[Mod[d, 7] > 0, d, 0], {d, Divisors@n}]]; Join[{1}, Table[Fibonacci[n, 2]*A028594[n], {n, 1, 50}]] (* G. C. Greubel, Jan 03 2018 *)
PROG
(PARI) {Pell(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)), n)}
{A002203(n)=Pell(n-1)+Pell(n+1)}
{a(n)=polcoeff(1 + 4*sum(m=1, n, Pell(m)*kronecker(m, 7)^2*m*x^m/(1-A002203(m)*x^m+(-1)^m*x^(2*m) +x*O(x^n))), n)}
for(n=0, 35, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 10 2012
STATUS
approved
A113957 Sum of the divisors of n which are not divisible by 7. +10
13
1, 3, 4, 7, 6, 12, 1, 15, 13, 18, 12, 28, 14, 3, 24, 31, 18, 39, 20, 42, 4, 36, 24, 60, 31, 42, 40, 7, 30, 72, 32, 63, 48, 54, 6, 91, 38, 60, 56, 90, 42, 12, 44, 84, 78, 72, 48, 124, 1, 93, 72, 98, 54, 120, 72, 15, 80, 90, 60, 168, 62, 96, 13, 127, 84, 144, 68, 126, 96, 18, 72 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
REFERENCES
B. C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, see p. 467, Entry 5(i).
LINKS
FORMULA
a(n) is multiplicative and a(p^e) = 1, if p=7, a(p^e) = (p^(e+1)-1)/(p-1) otherwise.
G.f.: ((theta_3(z)*theta_3(7z) + theta_2(z)*theta_2(7z))^2-1)/4.
L.g.f.: log(Product_{k>=1} (1 - x^(7*k))/(1 - x^k)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, Mar 14 2018
Sum_{k=1..n} a(k) ~ (Pi^2/14) * n^2. - Amiram Eldar, Oct 04 2022
Dirichlet g.f. (1-7^(1-s))*zeta(s)*zeta(s-1). - R. J. Mathar, May 17 2023
MATHEMATICA
f[p_, e_] := If[p == 7, 1, (p^(e+1)-1)/(p-1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 17 2020 *)
PROG
(PARI) a(n)=if(n<1, 0, sigma(n/7^valuation(n, 7)))
CROSSREFS
Cf. A028594(n)=4*a(n) if n>0.
Cf. A244600.
KEYWORD
nonn,mult
AUTHOR
Michael Somos, Nov 10 2005
STATUS
approved
A227131 Sum of divisors of n that are not divisible by 25. a(0) = 1. +10
5
1, 1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 14, 24, 24, 31, 18, 39, 20, 42, 32, 36, 24, 60, 6, 42, 40, 56, 30, 72, 32, 63, 48, 54, 48, 91, 38, 60, 56, 90, 42, 96, 44, 84, 78, 72, 48, 124, 57, 18, 72, 98, 54, 120, 72, 120, 80, 90, 60, 168, 62, 96, 104, 127, 84, 144, 68, 126, 96, 144, 72, 195, 74, 114, 24, 140 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
LINKS
FORMULA
a(n) is multiplicative with a(0) = 1, a(5^e) = 6 if e>0, a(p^e) = (p^(e+1) - 1) / (p - 1) otherwise.
G.f. is a period 1 Fourier series which satisfies f(-1 / (25 t)) = 25 (t/i)^2 f(t) where q = exp(2 Pi i t).
G.f.: 1 + Sum_{k>0} k * x^k / (1 - x^k) - Sum_{k>0} 25 * k * x^(25*k) / (1 - x^(25*k)).
Sum_{k=1..n} a(k) ~ (2*Pi^2/25) * n^2. - Amiram Eldar, Oct 04 2022
EXAMPLE
G.f. = 1 + q + 3*q^2 + 4*q^3 + 7*q^4 + 6*q^5 + 12*q^6 + 8*q^7 + 15*q^8 + 13*q^9 + ...
75 has six divisors: 1, 3, 5, 15, 25, 75, but both 25 and 75 are divisible by 25, thus not counted, and we have a(75) = 1+3+5+15 = 24. - Antti Karttunen, Nov 23 2017
MATHEMATICA
a[ n_] := If[ n < 1, Boole[ n == 0], Sum[ If[ Mod[ d, 25] > 0, d, 0], {d, Divisors @ n}]];
PROG
(PARI) {a(n) = if( n<1, n==0, sumdiv( n, d, if( d%25, d)))};
(PARI) {a(n) = if( n<1, n==0, 1 * (sigma(n) - if( n%25==0, 25 * sigma( n / 25))))};
(Sage) A = ModularForms( Gamma0(25), 2, prec=66) . basis(); A[0] + A[1] + 3*A[2] + 4*A[3] + 7*A[4];
(Magma) A := Basis( ModularForms( Gamma0(25), 2), 66); A[1] + A[2] + 3*A[3] + 4*A[4] + 7*A[5]; /* Michael Somos, Jun 12 2014 */
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
Michael Somos, Jul 02 2013
EXTENSIONS
More terms from Antti Karttunen, Nov 23 2017
STATUS
approved
A366091 a(n) is the number of ways to write n = i^2 + 2*j^2 + 3*k^2 with i,j,k >= 0. +10
3
1, 1, 1, 2, 2, 1, 2, 1, 1, 3, 0, 2, 4, 1, 2, 2, 2, 1, 3, 2, 2, 4, 2, 1, 2, 2, 0, 4, 3, 2, 5, 2, 1, 3, 2, 2, 7, 2, 2, 5, 0, 2, 0, 2, 4, 4, 3, 1, 4, 3, 3, 5, 3, 2, 7, 1, 2, 6, 0, 3, 6, 2, 2, 4, 2, 2, 6, 3, 2, 4, 3, 3, 3, 2, 0, 7, 5, 2, 6, 3, 2, 8, 2, 2, 11, 2, 5, 2, 2, 3, 0, 4, 3, 7, 3, 2, 2, 3, 3 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,4
LINKS
FORMULA
G.f. (1 + theta_3(0,z)) * (1 + theta_3(0,z^2)) * (1 + theta_3(0,z^3))/8 where theta_3 is a Jacobi theta function.
EXAMPLE
a(9) = 3 because 9 = 3^2 + 2*0^2 + 3*0^2 = 1^2 + 2*2^2 + 3*0^2 = 2^2 + 2*1^2 + 3*1^2.
MAPLE
g:= (1+JacobiTheta3(0, z))*(1+JacobiTheta3(0, z^2))*(1+JacobiTheta3(0, z^3))/8:
S:= series(g, z, 101):
seq(coeff(S, z, j), j=0..100);
PROG
(Python)
from itertools import count
from sympy.ntheory.primetest import is_square
def A366091(n):
c = 0
for k in count(0):
if (a:=3*k**2)>n:
break
for j in count(0):
if (b:=a+(j**2<<1))>n:
break
if is_square(n-b):
c += 1
return c # Chai Wah Wu, Sep 29 2023
CROSSREFS
Cf. A028594 (allows any integer i,j,k), A055042 (a(n) = 0)
KEYWORD
nonn
AUTHOR
Robert Israel, Sep 28 2023
STATUS
approved
A028596 Expansion of (theta_3(z)*theta_3(7z) + theta_2(z)*theta_2(7z))^4. +10
1
1, 8, 40, 128, 328, 656, 1216, 1864, 2856, 3560, 5392, 6368, 9856, 10640, 17000, 16832, 22600, 23760, 32776, 32576, 43792, 52864, 57568, 58560, 78528, 76024, 94864, 98432, 137864, 116720, 152512, 143040, 179240, 179072, 212112, 237328, 265768, 242352, 296704, 295232 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
LINKS
PROG
(PARI) a(n) = polcoeff((1 + 2*x*Ser(qfrep([2, 1; 1, 4], n, 1)))^4, n); \\ Jinyuan Wang, Feb 21 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Jinyuan Wang, Feb 21 2020
STATUS
approved
page 1

Search completed in 0.006 seconds

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 13 09:59 EDT 2024. Contains 375904 sequences. (Running on oeis4.)