删除的内容 添加的内容
InternetArchiveBot留言 | 贡献
补救110个来源,并将0个来源标记为失效。) #IABot (v2.0.8) (IN - 6881
第46行:
所有已发现的碱金属均天然存在于自然界中。按照[[化學元素豐度]]顺序,自然界化学丰度最高的是钠,其次是钾,接下来是锂、铷、铯,最后是钫。钫的[[放射性]]很强,[[半衰期]]很短,十分不穩定,因此只能作为天然[[衰變鏈]]的产物,在自然界中[[痕量同位素|痕量]]存在。<ref name="webelements-occurrence"/><ref name="chemeducator"/>已有实验试图合成可能的第七个碱金属[[Uue]],但截至目前均以失败告终。<ref name="link" />此外,由于[[相对论效应]]会极大影响包括Uue在内的[[超重元素]]的性质,因此Uue可能不是碱金属;<ref name="tanm" />即使它真的是碱金属,它的物理性质和化学性质也可能会和其它六个碱金属有较大差异。<ref name="Uue"/>{{rp|1729–1733}}
 
碱金属有多种用途。铷或铯的[[原子钟]]是游离态碱金属元素最著名的应用实例之一,<ref name="atomic-clocks"/>其中以铯原子钟最为精准。<ref name="pubs.usgs">{{cite web|url = http://pubs.usgs.gov/of/2004/1432/2004-1432.pdf|format = PDF|publisher = United States Geological Survey|accessdate = 2009-12-27|title = Mineral Commodity Profile: Cesium|first1 = William C.|last1 = Butterman|first2 = William E.|last2 = Brooks|first3 = Robert G.|last3 = Reese, Jr.|archiveurl = https://web.archive.org/web/20091122210358/http://pubs.usgs.gov/of/2004/1432/2004-1432.pdf|archivedate = 20091122|deadurl = no|date = 2004}}</ref><ref name="nist-second"/>钠化合物较为常见的一种用途是制作[[钠灯]],一种高效光源。<ref name="lamp1"/><ref name="lamp2"/> 人类对[[食盐]](氯化钠)的使用可追溯到古代。钠和钾是生物体中的[[电解质]],具有重要的生物学功能,属于[[膳食矿物质]]。<ref name="webelements-potassium"/><ref name="webelements-sodium"/>尽管其它碱金属并非膳食矿物质,它们同样会对身体产生或有益或有害的影响。<ref name="webelements-lithium"/><ref name="webelements-rubidium"/><ref name="webelements-caesium"/><ref name="rsc-francium"/>
 
==性质==
第91行:
=====和第14族(第IV<sub>A</sub>族,碳族)元素的反应=====
{{double image|right|Potassium-graphite-xtal-3D-SF-A.png|150|Potassium-graphite-xtal-3D-SF-B.png|150|从侧面 ''(左图)'' 和上方 ''(右图)'' 看去的 [[石墨层间化合物]] KC<sub>8</sub>结构。}}
锂和钠可与[[碳]]反应生成{{link-en|乙炔化合物|Acetylide}}(Li<sub>2</sub>C<sub>2</sub>和Na<sub>2</sub>C<sub>2</sub>),这类化合物也可由金属与[[乙炔]]反应制得。钾、钠、铷和铯可与[[石墨]]反应,碱金属原子[[嵌入 (化學)|嵌入]]到六边形的石墨层中,形成[[石墨层间化合物]]MC<sub>60</sub>(深灰色、近乎黑色)、MC<sub>48</sub>(深灰色、近乎黑色)、MC<sub>36</sub>(蓝色)、MC<sub>24</sub>(钢蓝色)、MC<sub>8</sub>(铜黄色)。它们的导电性比纯石墨强200倍,说明碱金属的价电子转移到石墨层中,形成M<sup>+</sup>C<sup>x-</sup>的化合物。<ref name=generalchemistry/>加热KC<sub>8</sub>时,钾原子发生脱嵌。随着加热时间的增长,逐渐形成KC<sub>24</sub>、KC<sub>36</sub>、KC<sub>48</sub>直到KC<sub>60</sub>。KC<sub>8</sub>是强[[还原剂]],可自燃,接触水则爆炸。<ref name="InorgChem">{{cite book| title = Inorganic Chemistry, 3rd Edition| chapter = Chapter 14: The group 14 elements| author1 = Catherine E. Housecroft| author2 = Alan G. Sharpe| publisher = Pearson| isbn = 978-0-13-175553-6| page = 386|date=2008}}</ref><ref>[http://physics.nist.gov/TechAct.2001/Div846/div846h.html NIST Ionizing Radiation Division 2001 - Technical Highlights] {{webarchive|url=https://web.archive.org/web/20141129035434/http://physics.nist.gov/TechAct.2001/Div846/div846h.html |date=2014-11-29 }}</ref>和石墨反应时,较大的碱金属原子(钾、铷、铯)开始时形成KC<sub>8</sub>,而小的碱金属原子开始时形成KC<sub>6</sub>。<ref name=cac6>{{cite journal|author=N. Emery ''et al.''|title=Review: Synthesis and superconducting properties of CaC6|journal=Sci. Technol. Adv. Mater.|format=free download pdf|volume=9|pages=044102|doi=10.1088/1468-6996/9/4/044102|bibcode=2008STAdM...9d4102E|issue=4|date=2008}}</ref>
 
碱金属和[[碳族元素|碳族]]其它的元素反应时,生成含笼状结构的离子化合物。例如硅化物M<sub>4</sub>{{化學式|Si|4}}(M=K,Rb,Cs),含有M<sup>+</sup>和四面体{{化學式|Si|4|-4}}离子。<ref name=generalchemistry/>碱金属锗化物中含有简单的[[锗|Ge]]<sup>4-</sup>离子,以及其它的簇合([[津特耳相]])离子,{{化學式|Ge|4|-2}}, {{化學式|Ge|9|-4}}, {{化學式|Ge|9|-2}}, 以及 [(Ge<sub>9</sub>)<sub>2</sub>]<sup>6−</sup>,其化学性质和相应的硅化物相近。<ref name="Greenwood&Earnshaw"/>碱金属锡化物主要为离子化合物。阴离子有[[锡|Sn]]<sup>4-</sup>离子,<ref name = "Kauzlarich">S.M. Kauzlarich,(1994), Zintl Compounds, Encyclopedia of Inorganic Chemistry, John Wiley & sons, ISBN 978-0-471-93620-6</ref>有时有更复杂的簇合离子,例如{{化學式|K|4|Sn|9}} 中的 {{化學式|Sn|9|-4}}, <ref name = "Hoch">Tetrapotassium nonastannide, {{化學式|K|4|Sn|9}},C. Hoch, M. Wendorff and C. Röhr, Acta Cryst. (2002). C58, i45-i46 {{doi|10.1107/S0108270102002032}}</ref>简单的铅阴离子([[铅|Pb]]<sup>4-</sup>)尚未发现;碱金属铅化物均含有复杂的簇合离子。<ref name="Greenwood&Earnshaw"/>
第358行:
由于奇数-奇数核素十分罕见,碱金属几乎所有的主要同位素均是奇数-偶数核素。碱金属奇数-奇数同位素中,锂-6是稳定的,钾的[[放射性同位素]]钾-40也有较长的寿命。对一个给定的奇数质量数,只能有一种{{link-en|β衰变稳定同位素|beta-decay stable isobars}}(不产生β衰变的同位素)。和偶数-偶数核素与奇数-奇数核素间的束缚能差距相比,奇数-偶数核素与偶数-奇数核素的束缚能几乎没有差距,因此和β衰变稳定同位素质量相等的其它核素([[同量素]])会产生β衰变,生成能量最低的核素。总之,质子数和/或中子数为奇数的核素相对不稳定,这就导致拥有奇数原子序数的元素——例如碱金属—— 拥有的稳定同位素数量比原子序数为偶数的元素少。26种[[单一同位素元素]]中,除[[铍]]之外的所有成员的质子数均为奇数,中子数均为偶数。(铍的质子数为偶数,中子数为奇数)<ref name="Lide02"/>
 
钠、钾、铷、钫拥有天然存在的[[放射性同位素]]: [[钠的同位素|钠-22]]和钠-24为{{link-en|宇生|cosmogenic}}的[[痕量放射同位素]] <ref>{{cite web |url=http://www.nucleonica.net/unc.aspx |title=Universal Nuclide Chart |date=2007–2012 |work=Nucleonica |publisher=Institute for Transuranium Elements |accessdate=2011-04-17 |archive-date=2017-02-19 |archive-url=https://web.archive.org/web/20170219043412/http://www.nucleonica.net/unc.aspx |dead-url=no }}</ref>,钾-40和[[铷的同位素|铷-87]]有很长的 [[半衰期]],得以在自然界中存在,<ref name="nuclideschart"/>钫的[[钫的同位素|所有同位素]]均具有[[放射性]]。<ref name="nuclideschart"/> 20世纪初,人们认为铯是放射性的,<ref name="Patt1926">{{cite journal | doi = 10.1021/cr60009a003 | title = The Radioactivity of the Alkali Metals | last1 = Patton | first1 = I. Jocelyn | last2 = Waldbauer | first2 = L. J. | journal = Chemical Reviews | volume = 3 | page = 81|date=1926}}</ref><ref name="Kenn1908">{{cite journal | doi =10.1080/14786440908636519 | title = On the radioactivity of potassium and other alkali metals | last1 = McLennan | first1 = J. C. | last2 = Kennedy | first2 = W. T. | journal = Philosophical Magazine | series = 6 | volume = 16 | issue = 93 | pages = 377–395|date=1908}}</ref>尽管它没有天然放射性同位素。<ref name="nuclideschart">{{cite web|url=http://www.nndc.bnl.gov/chart/|title=Interactive Chart of Nuclides|publisher=Brookhaven National Laboratory|author=Sonzogni, Alejandro|location=National Nuclear Data Center|accessdate=2012-10-04|archive-date=2011-08-22|archive-url=https://www.webcitation.org/618bSplPt?url=http://www.nndc.bnl.gov/chart/|dead-url=no}}</ref><ref group="注解">那时还没有发现钫。</ref>钾的天然放射性同位素K-40约占自然界中的钾的0.012%,因此自然界的钾存在微弱的放射性。<ref>{{cite web |url=http://www.ead.anl.gov/pub/doc/potassium.pdf |title=Potassium-40 |date=August 2005 |work=Human Health Fact Sheet |publisher=[[阿贡国家实验室|Argonne National Laboratory]], Environmental Science Division |accessdate=2012-02-07 |deadurl=yes |archiveurl=https://web.archive.org/web/20120307143326/http://www.ead.anl.gov/pub/doc/potassium.pdf |archivedate=2012-03-07 }}</ref>正是钾产生的这一微弱辐射,导致1925年有人错误地声称发现了87号元素。<ref name="fontani">{{cite conference| first = Marco| last = Fontani| title = The Twilight of the Naturally-Occurring Elements: Moldavium (Ml), Sequanium (Sq) and Dor (Do)| booktitle = International Conference on the History of Chemistry| pages = 1–8| date = 2005-09-10| location = Lisbon| url = http://5ichc-portugal.ulusofona.pt/uploads/PaperLong-MarcoFontani.doc| archiveurl = https://web.archive.org/web/20060224090117/http://5ichc-portugal.ulusofona.pt/uploads/PaperLong-MarcoFontani.doc| archivedate = 2006-02-24| accessdate = 2007-04-08| deadurl = yes}}</ref><ref name="vanderkrogt-Fr">{{cite web| last = Van der Krogt| first = Peter| title = Francium| work = Elementymology & Elements Multidict| date = 2006-01-10| url = http://elements.vanderkrogt.net/element.php?sym=Fr| accessdate = 2007-04-08| archive-date = 2010-01-23| archive-url = https://web.archive.org/web/20100123003337/http://elements.vanderkrogt.net/element.php?sym=Fr| dead-url = yes}}</ref>
 
[[铯-137]]是一种β放射源,也是一种强γ放射源。它的半衰期为30.17&nbsp;年,是两种主要的[[中等寿命裂变产物]]之一(另一种为[[锶-90]])。这两种裂变产物是[[核燃料棒]]使用完毕后数年到数百年产生的辐射的主要来源。{{SimpleNuclide|銫|137}}经过高能β衰变,最终生成稳定的[[钡的同位素|钡-137]]。{{SimpleNuclide|銫|137}}捕获中子的速度很慢,因而不能通过中子照射的方法进行处理,只能任其衰变。<ref name="Cs-137">{{cite web|title=Radionuclide Half-Life Measurements|url=http://www.nist.gov/pml/data/halflife-html.cfm|author=National Institute of Standards and Technology|accessdate=2011-11-07|archive-date=2016-08-12|archive-url=https://web.archive.org/web/20160812133216/http://nist.gov/pml/data/halflife-html.cfm|dead-url=no}}</ref>在水文学研究中,{{SimpleNuclide|銫|137}}被用做{{le|流体示踪物|Flow tracer|示踪物}},和[[氚]]在这方面的应用类似。<ref>{{cite web | url=http://www.bt.cdc.gov/radiation/isotopes/cesium.asp | title=Radioisotope Brief: Cesium-137 (Cs-137) | accessdate=2013-10-25 | deadurl=yes | archiveurl=https://web.archive.org/web/20160329120038/http://www.bt.cdc.gov/radiation/isotopes/cesium.asp | archivedate=2016-03-29 }}</ref>几乎所有的[[核试验]]都会向环境中释放少量的[[铯的同位素|铯-134]]与铯-137。某些核事故也会释放这两种同位素,比如[[切尔诺贝利核事故]]和[[福岛第一核电站事故]]。截至2005年,铯-137仍是[[切尔诺贝利核电厂]]附近[[切尔诺贝利隔离区|隔离区]]的主要辐射源。<ref name="IAEA">{{cite book |title=The Radiological Accident in Goiânia |publisher=[[IAEA]] |url=http://www-pub.iaea.org/MTCD/publications/PubDetAR.asp?pubId=3684 |date=1988 |access-date=2013-09-18 |archive-date=2011-01-20 |archive-url=https://web.archive.org/web/20110120085823/http://www-pub.iaea.org/MTCD/publications/PubDetAR.asp?pubId=3684 |dead-url=no }}</ref>
第365行:
{{see also|Uue}}
[[File:Atomic radius of alkali metals and alkaline earth metals.svg|thumb|right|250px|从[[第3周期元素|第三周期]]到[[第9周期元素|第九周期]]的碱金属与[[碱土金属]]原子半径。 Na–Cs, Mg–Ra的数据为{{le|实测证据|Empirical evidence|实测值}}, Fr–Uhp, Ubn–Uhh的数据为预测值。单位为[[埃]]<ref name="Uue"/>{{rp|1730}}<ref name="pyykko"/>]]
尽管目前只发现了6个碱金属元素,目前已有研究预测比钫更重的碱金属元素的物理性质与化学性质。据推测,钫之后的第一个碱金属元素是目前尚未发现的第119号元素[[Uue]]。它是[[第8周期元素|第八周期]]的第一个元素,性质和可能同族的其它元素类似。<ref name="Uue"/>{{rp|1729–1730}}它的化学性质可能更接近钾<ref name=EB>{{cite web|author=Seaborg, G. T.|url=http://www.britannica.com/EBchecked/topic/603220/transuranium-element|title=transuranium element (chemical element)|publisher=Encyclopædia Britannica|date=ca. 2006|accessdate=2010-03-16|archive-date=2010-11-30|archive-url=https://web.archive.org/web/20101130112151/http://www.britannica.com/EBchecked/topic/603220/transuranium-element|dead-url=no}}</ref>或铷<ref name="Uue"/>{{rp|1729–1730}};而根据[[元素周期律]],Uue的性质应当与铯或钫更为相近,乃至比它们更易反应。Uue的价电子运动速度高,产生[[相对论效应]],导致Uue的第一电离能升高,[[金属半径]]和[[离子半径]]降低,反应性下降。<ref name="EB"/>目前已发现相对论效应对钫的性质产生了类似影响。<ref name="Uue"/>{{rp|1729–1730}}相对论效应可能导致Uue元素不像其它碱金属那样反应。<ref name="tanm">{{cite web |url=http://lch.web.psi.ch/files/lectures/TexasA&M/TexasA&M.pdf |title=Gas Phase Chemistry of Superheavy Elements |author=Gäggeler, Heinz W. |date=5–7 November 2007 |work=Lecture Course Texas A&M |accessdate=2012-02-26 |deadurl=yes |archiveurl=https://web.archive.org/web/20120220090755/http://lch.web.psi.ch/files/lectures/TexasA%26M/TexasA%26M.pdf |archivedate=2012年2月20 }}</ref> Uue的8s轨道因相对论效应而变得稳定,导致 Uue的[[电子亲合能]]升高——远高于铯和钫的电子亲合能,甚至比其它所有的碱金属元素都高。 相对论效应同样会导致Uue的[[极化性]]大幅下降。<ref name="Uue"/>{{rp|1729–1730}}另一方面, Uue的熔点可能仍符合碱金属元素的熔点变化规律,也就是比钫更低。据推测,Uue的熔点可能在0&nbsp;°C 到 30&nbsp;°C之间。<ref name="Uue"/>{{rp|1724}}
 
[[File:Electron affinity of alkali metals.svg|thumb|left|200px|从[[第3周期元素|第三周期]]到[[第8周期元素|第八周期]]的碱金属电子亲和能。 Na–Fr的数据为{{le|实测证据|Empirical evidence|实测值}},Uue的数据为预测值。单位为[[电子伏特]]<ref name="Uue"/>{{rp|1730}}<ref name="pyykko"/>]]
第434行:
===碱金属族的出现===
 
1865年左右,[[约翰·纽兰兹]]发表了一系列论文,列出了这些元素,以原子量增加和物理化学性质相似的顺序出现,第一个元素会和第八个元素的性质类似。他将这种周期性比作音乐的[[八度]]。在这种情况下,分开了一个八度的音符具有相似的音乐功能。<ref>{{cite journal |title= On Relations Among the Equivalents |last=Newlands|first=John A. R. |journal= Chemical News |volume= 10 |pages= 94–95 |date= 20 August 1864 |url=http://web.lemoyne.edu/~GIUNTA/EA/NEWLANDSann.HTML |url-status=live |archiveurl=https://web.archive.org/web/20110101073248/http://web.lemoyne.edu/~GIUNTA/EA/NEWLANDSann.HTML |archivedate=1 January 2011 |accessdate=25 November 2013}}</ref><ref>{{cite journal |title= On the Law of Octaves |last=Newlands|first=John A. R. |journal= Chemical News |volume= 12 |page= 83 |date= 18 August 1865 |url=http://web.lemoyne.edu/~GIUNTA/EA/NEWLANDSann.HTML |url-status=live |archiveurl=https://web.archive.org/web/20110101073248/http://web.lemoyne.edu/~GIUNTA/EA/NEWLANDSann.HTML |archivedate=1 January 2011 |accessdate=25 November 2013}}</ref> 他将所有已知的碱金属(锂到铯)以及[[铜]],[[银]]和[[铊]](它们表示出碱金属的+1氧化态特征)放入当时的元素周期表,一起成为一个族。他的周期表把氢归类为[[卤素]]。<ref name="meta-synthesis2" />
 
[[File:Mendelejevs periodiska system 1871.png|thumb|500px|[[德米特里·伊万诺维奇·门捷列夫]]的周期系统于1871年提出,显示氢和碱金属属于I族。铜,银和金也属于那一族]]
1869年后,[[德米特里·伊万诺维奇·门捷列夫]]提出了他的元素周期表,将锂放在钠,钾、铷、铯和铊形成的族的顶部。<ref>{{cite journal |last=Mendelejew |first=Dimitri |year=1869 |title=Über die Beziehungen der Eigenschaften zu den Atomgewichten der Elemente |journal=Zeitschrift für Chemie |pages=405–406 |language=de}}</ref> 两年后,门捷列夫修改了元素周期表,将第1族中的氢置于锂上方,并且将铊移至[[硼族元素]]。 在此版本,铜、银和[[金]]被放置了两次,一次是[[11族元素]]的一部分,另一次是包含当今[[8族元素| 8]]至11族元素的VIII族。<ref name="Jensen">{{cite journal |last1=Jensen |first1=William B. |year=2003 |title=The Place of Zinc, Cadmium, and Mercury in the Periodic Table |journal=Journal of Chemical Education |volume=80 |issue=8 |pages=952–961 |publisher=[[American Chemical Society]] |doi=10.1021/ed080p952 |bibcode=2003JChEd..80..952J |url=http://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/091.%20Zn-Cd-Hg.pdf |accessdate=2012-05-06 |url-status=dead |archiveurl=https://web.archive.org/web/20100611152417/http://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/091.%20Zn-Cd-Hg.pdf |archivedate=11 June 2010}}</ref><ref group="注解">在1869年,门捷列夫的元素周期表中,铜和银与氢和[[汞]]排在同一族中,而金暂定在[[铀]]和当时未发现的[[镓|铝下元素]]之下,属于[[硼族元素]]。</ref> 引入18列元素周期表后,第11族元素移动到了[[d区元素|d区]]中的当前位置,而碱金属则留在了 IA组中。后来该组的名称在1988年更改为第1族。<ref name = fluck/> 碱金属这个名称来自以下事实:当碱金属溶于水中时,它们所形成的氢氧化物均为强碱。<ref name=rsc />
 
===锂===
第463行:
 
===钫===
1939年之前,第87号元素被错误或者不完整地发现了至少四次。<ref name="fontani"/><ref name="vanderkrogt-Fr"/><ref>{{cite news| title = Alabamine & Virginium| work = TIME| date = 1932-02-15| url = http://www.time.com/time/magazine/article/0,9171,743159,00.html| accessdate = 2007-04-01| archive-date = 2011-01-30| archive-url = https://web.archive.org/web/20110130144712/http://www.time.com/time/magazine/article/0,9171,743159,00.html| dead-url = no}}</ref><ref>{{cite journal| last = MacPherson| first = H. G.| title = An Investigation of the Magneto-Optic Method of Chemical Analysis| journal = Physical Review| volume = 47| issue = 4| pages = 310–315| publisher = American Physical Society|doi = 10.1103/PhysRev.47.310|bibcode = 1935PhRv...47..310M |date=1934}}</ref> 1939年,{{le|居里研究所 (巴黎)|Curie Institute (Paris)|居里研究所}}的[[玛格丽特·佩里]]在巴黎提纯一份[[锕的同位素|锕-227]]样品时真正发现了钫。锕-227的{{le|衰变能|decay energy}}为220&nbsp;[[电子伏特|keV]],然而佩里发现其中一些衰变粒子的能量低于80&nbsp;keV。佩里认为这是一种之前未被分辨出的衰变产物,于是在提纯过程中将其分离出来,但是后来在提纯的后[[锕]]-227中又产生了这种物质。后续的大量实验证明这种未知物质不可能是[[钍]]、[[镭]]、[[铅]]、[[铋]]或者[[铊]],而显现出可碱金属相近的化学性质(比如和铯盐形成{{le|共沉淀|Coprecipitation}})。佩里因而认为这种未知物是第87号元素,由锕-227的[[α衰变]]产生。<ref name="chemeducator">Adloff, Jean-Pierre; Kaufman, George B. (2005-09-25).[http://chemeducator.org/sbibs/s0010005/spapers/1050387gk.htm Francium (Atomic Number 87), the Last Discovered Natural Element] {{webarchive|url=https://web.archive.org/web/20130604212956/http://chemeducator.org/sbibs/s0010005/spapers/1050387gk.htm |date=2013-06-04 }}. ''The Chemical Educator'' '''10''' (5). Retrieved on 26 March 2007.</ref>于是佩里试图测定锕-227中α衰变与[[β衰变]]的比率。她的第一次实验测定的α衰变比率为0.6%,后来她将这一数值修正为1%。<ref name="mcgraw">{{Cite book| contribution = Francium| title = {{le|麦格劳-希尔科技百科全书|McGraw-Hill Encyclopedia of Science & Technology|McGraw-Hill Encyclopedia of Science & Technology}}| volume = 7| pages = 493–494| publisher = McGraw-Hill Professional|isbn = 0-07-913665-6|date=2002}}</ref>钫是最后一种在自然界中发现的元素。<ref group="注解">一些元素——如[[锝]]和[[钚]]——起初由人工制得,后来在自然界中发现了。</ref>
 
===钫下元素(Eka-钫)===
第494行:
| issue = 13 |doi = 10.1007/BF01162588 |pages = 203–215 |journal = Mineralogy and Petrology |first = M. A. |last = Wise |bibcode = 1995MinPe..55..203W |date=1995}}</ref>铯的丰度低于铷,但比很多为人们所熟知的元素(比如[[镉]]、[[锡]]、[[锑]]、[[钨]])更高。<ref name="pubs.usgs"/>
 
[[钫的同位素|钫-223]]是钫的唯一一种天然存在的同位素。<ref name="atomicweights2007"/><ref name="atomicweights2009"/>它是[[锕的同位素|锕-227]]的[[α衰变]]产物,在[[铀]]和[[钍]]的矿物中极少量存在。<ref name="CRC2006">{{Cite book |title = CRC Handbook of Chemistry and Physics |volume = 4|page= 12|publisher = CRC|isbn= 0-8493-0474-1|date=2006}}</ref> 在铀矿石中,大概有10<sup>18</sup> 个铀原子才会出现一个钫原子。<ref name="nbb">{{cite book| last = Emsley| url = http://books.google.com/books?id=Yhi5X7OwuGkC&pg=PA151| first = John| title = Nature's Building Blocks| publisher = Oxford University Press| location = Oxford| pages = 151–153| isbn = 0-19-850341-5| date = 2001| access-date = 2013-10-14| archive-date = 2020-03-21| archive-url = https://web.archive.org/web/20200321225231/https://books.google.com/books?id=Yhi5X7OwuGkC| dead-url = no}}</ref><ref name="elemental">{{cite web| last = Gagnon| first = Steve| title = Francium| publisher = Jefferson Science Associates, LLC| url = http://education.jlab.org/itselemental/ele087.html| accessdate = 2007-04-01| archiveurl = https://web.archive.org/web/20070331235139/http://education.jlab.org/itselemental/ele087.html| archivedate = 2007年3月31| deadurl = no}}</ref> 钫的[[半衰期]]极短,为22分钟;因此据估计[[地壳]]中最多只会有30&nbsp;g的钫。<ref name="Winter">{{cite web
|last = Winter
|first = Mark
第520行:
制取纯的碱金属较为困难。碱金属的反应活性很高,这导致它们极易和常见的物质(例如水、空气)反应,且无法用其他元素[[置换反应|置换]]制备。因此,碱金属只能用电解一类的高能方法分离。<ref name="rsc"/><ref name=generalchemistry/>锂和钠通常用电解熔融氯化物的方法获得,为了降低熔点,通常会在混合物中加[[氯化钙]]。其它几种较重的碱金属一般用还原剂(通常是[[镁]]或者[[钙]])还原的方法制备。用还原反应可获得液态或气态的碱金属,产物经[[分馏]]可获得纯化的碱金属。<ref name=generalchemistry/>
 
锂盐必须从矿物泉水中、 [[卤水]]池或者卤水矿产生的卤水中提取。电解熔融的[[氯化锂]]和[[氯化钾]]混合物,便可以得到金属锂。<ref name="ober">{{cite web |url=http://minerals.usgs.gov/minerals/pubs/commodity/lithium/450798.pdf |title=Lithium |accessdate=2007-08-19 |last=Ober |first=Joyce A |format=PDF |pages=77–78 |publisher=[[United States Geological Survey]] |archiveurl=https://web.archive.org/web/20070711062102/http://minerals.usgs.gov/minerals/pubs/commodity/lithium/450798.pdf |archivedate=2007年7月11 |deadurl=no }}</ref>
 
钾存在于多种矿物中,例如[[钾石盐]]([[氯化钾]])等。<ref name="rsc"/>有时会用分解氯化钾来制取金属钾,但钾更常见的制备方法是电解[[氢氧化钾]],<ref>{{cite web|publisher=Webelements|title=WebElements Periodic Table of the Elements {{pipe}} Potassium {{pipe}} Essential information|url=http://www.webelements.com/potassium/|author=Winter, Mark|accessdate=2011-11-27|archive-date=2011-11-21|archive-url=https://web.archive.org/web/20111121171037/http://www.webelements.com/potassium/|dead-url=no}}</ref> 和19世纪末20世纪初制取钠的方法类似。<ref name=kirk>Eggeman, Tim. Sodium and Sodium Alloys. ''Kirk-Othmer Encyclopedia of Chemical Technology''. John Wiley & Sons, Inc. Published online '''2007'''. {{doi|10.1002/0471238961.1915040912051311.a01.pub2}}</ref>氢氧化钾矿物广泛存在于[[加拿大]]、[[俄罗斯]]、[[白俄罗斯]]、[[德国]]、[[以色列]]、[[美国]]和[[约旦]]等地。含钾矿物也可以从[[海水]]中提取。
第543行:
铷和铯常用于制作[[原子钟]]。<ref name="atomic-clocks">{{cite web|title = Cesium Atoms at Work|publisher = Time Service Department—U.S. Naval Observatory—Department of the Navy|url = http://tycho.usno.navy.mil/cesium.html|accessdate = 2009-12-20|archive-date = 2015-02-23|archive-url = https://web.archive.org/web/20150223231150/http://tycho.usno.navy.mil/cesium.html|dead-url = no}}</ref>铯原子钟极其精确,如果一台铯原子钟从8千万年前的恐龙时代开始运行到今天,它的偏差不会超过4秒。<ref name="pubs.usgs"/>因此铯原子被用来定义“秒”单位。<ref name="nist-second">{{cite web|title=The NIST reference on Constants, Units, and Uncertainty|publisher=National Institute of Standards and Technology|url=http://physics.nist.gov/cuu/Units/second.html|accessdate=2013-10-19|archive-date=2018-07-26|archive-url=https://web.archive.org/web/20180726103642/https://physics.nist.gov/cuu/Units/second.html|dead-url=no}}</ref>铯常添加在石油工业所用的钻井液中。<ref name="pubs.usgs" /><ref>{{cite book|title = Exploring Chemical Elements and their Compounds|author = Heiserman, David L.|publisher = McGraw-Hill|isbn = 0-8306-3015-5|pages = 201–203|date=1992}}</ref>铷离子常用于制作紫色[[焰火]]。<ref>{{Cite journal |first = E.-C. |last = Koch |title = Special Materials in Pyrotechnics, Part II: Application of Caesium and Rubidium Compounds in Pyrotechnics |journal = Journal Pyrotechnics |volume = 15 |pages = 9–24 |url = http://www.jpyro.com/wp/?p=179 |date = 2002 |author = |access-date = 2013-10-19 |archive-url = https://web.archive.org/web/20110713122322/http://www.jpyro.com/wp/?p=179 |archive-date = 2011-07-13 |dead-url = yes }}</ref>
 
钫没有商业应用,<ref name="nbb" /><ref name="elemental"/><ref>{{cite web| last = Winter| first = Mark| title = Uses| work = Francium| publisher = The University of Sheffield| url = http://www.webelements.com/webelements/elements/text/Fr/uses.html| accessdate = 2007-03-25| archiveurl = https://web.archive.org/web/20070331031655/http://www.webelements.com/webelements/elements/text/Fr/uses.html| archivedate = 2007年3月31| deadurl = no}}</ref>但钫的原子结构相对简单,因而在[[光谱学]]实验中有广泛应用。钫的光谱学研究可以提供和[[能级]]、[[次原子粒子]]间的[[耦合常数]]相关的信息。<ref>{{cite journal| last = Gomez| first = E|coauthors = Orozco, L A, and Sprouse, G D| title = Spectroscopy with trapped francium: advances and perspectives for weak interaction studies| journal = Rep. Prog. Phys.|volume = 69| issue = 1| pages = 79–118| date = 2005-11-07|doi = 10.1088/0034-4885/69/1/R02|bibcode = 2006RPPh...69...79G }}</ref>科学家研究激光束缚的钫-210粒子发射的光,获得了原子能级跃迁的准确数据,和[[量子论]]的预测相近。<ref>{{cite journal|last = Peterson|first = I|title = Creating, cooling, trapping francium atoms|page = 294|journal = Science News|date = 1996-05-11|url = http://www.sciencenews.org/pages/pdfs/data/1996/149-19/14919-06.pdf|accessdate = 2009-09-11|volume = 149|issue = 19|author = |archive-url = https://web.archive.org/web/20110604223626/http://www.sciencenews.org/pages/pdfs/data/1996/149-19/14919-06.pdf|archive-date = 2011-06-04|dead-url = yes}}</ref>
 
==生物学作用及防护==
第550行:
通常在生物系统中只有痕量的锂。锂没有已知的生物学作用,但是摄入锂确实对身体有影响。<ref name="webelements-lithium"/> [[精神病学]]中常用每天0.5 到 2&nbsp;克的[[碳酸锂]],做为{{le|精神稳定剂|mood stabiliser}}治疗双极性情感疾患([[躁郁症]]),不过这种治疗有一些副作用。<ref name="webelements-lithium"/>摄入过量的锂会导致呆滞、言语不清、呕吐等症状,<ref name="webelements-lithium"/>乃至引发[[中枢神经]]中毒。<ref name="webelements-lithium"/>而用于治疗躁郁症的锂用量仅仅略低于中毒剂量。<ref name="webelements-lithium">{{cite web|publisher=Webelements|title=WebElements Periodic Table of the Elements {{pipe}} Lithium {{pipe}} biological information|url=http://www.webelements.com/lithium/biology.html|author=Winter, Mark|accessdate=2011-02-15|archive-date=2011-03-07|archive-url=https://web.archive.org/web/20110307035524/http://www.webelements.com/lithium/biology.html|dead-url=no}}</ref><ref name="theodoregray-lithium">{{cite web |url=http://www.theodoregray.com/periodictable/Elements/003/index.s7.html |title=Facts, pictures, stories about the element Lithium in the Periodic Table |author=[[西奥多•格雷|Gray, Theodore]] |work=theodoregray.com |accessdate=2012-01-09 |archive-date=2011-12-27 |archive-url=https://web.archive.org/web/20111227093636/http://www.theodoregray.com/PeriodicTable/Elements/003/index.s7.html |dead-url=no }}</ref> 锂在人体中的天然生物学功能尚待研究;不过从生物化学特性、被人体处理的方式以及在老鼠、山羊身上的实验结果来看,锂是一种[[膳食礦物質|必要]]的[[稀有元素]]。<ref>{{cite journal |last1=Howland |first1=Robert H. |title=Lithium: Underappreciated and Underused? |journal=Psychiatric Annals |volume=37 |issue=9 |url=http://www.healio.com/journals/psycann/%7B19970467-072d-409e-8cda-9323edb2f73d%7D/lithium-underappreciated-and-underused |accessdate=2012-11-06 |date=2007年9月 |archive-date=2013-05-26 |archive-url=https://web.archive.org/web/20130526091740/http://www.healio.com/journals/psycann/%7B19970467-072d-409e-8cda-9323edb2f73d%7D/lithium-underappreciated-and-underused |dead-url=no }}</ref><ref>{{cite journal |last1=Zarse |first1=Kim |last2=Terao |first2=Takeshi |last3=Tian |first3=Jing |last4=Iwata |first4=Noboru |last5=Ishii |first5=Nobuyoshi |last6=Ristow |first6=Michael |title=Low-dose lithium uptake promotes longevity in humans and metazoans |journal=European Journal of Nutrition |volume=50 |issue=5 |pages=387–9 |publisher=Springer |doi=10.1007/s00394-011-0171-x |url=http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3151375/pdf/394_2011_Article_171.pdf |pmc=3151375 |accessdate=2012-11-06 |pmid=21301855 |date=2011年8月 |archive-date=2015-07-13 |archive-url=https://web.archive.org/web/20150713173538/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3151375/pdf/394_2011_Article_171.pdf |dead-url=no }}</ref>
 
钠和钾存在于一切已知的生物学系统中,通常作为[[细胞]]内外的[[电解质]]存在。<ref name="webelements-potassium"/><ref name="webelements-sodium"/> 钠是控制血容量、血压、渗透平衡和[[pH]]的必须营养素,人类对钠的最小生理需求量为每天500毫克。<ref name=r31>{{cite web|url=http://nuinfo-proto4.northwestern.edu/nutrition/factsheets/sodium.pdf|archiveurl=https://web.archive.org/web/20120326143817/http://nuinfo-proto4.northwestern.edu/nutrition/factsheets/sodium.pdf|archivedate=2012-03-26|title=Sodium|publisher=Northewestern University|accessdate=2011-11-21|deadurl=yes}}</ref> [[氯化钠]]——也就是俗称的食盐——是食物中主要的钠源,用作调味品和食物处理(比如[[泡菜]]、[[腊肉]])。氯化钠主要来自处理过的食物。<ref>{{cite web|url=http://health.ltgovernors.com/sodium-and-potassium-health-facts.html|title=Sodium and Potassium Quick Health Facts|accessdate=2011-11-07|archive-date=2018-06-30|archive-url=https://web.archive.org/web/20180630141652/http://health.ltgovernors.com/sodium-and-potassium-health-facts.html|dead-url=no}}</ref>钠的[[膳食营养素参考摄入量|DRI]]为每天1.5g,<ref>{{cite web|title=Dietary Reference Intakes: Water, Potassium, Sodium, Chloride, and Sulfate|url=http://www.iom.edu/Reports/2004/Dietary-Reference-Intakes-Water-Potassium-Sodium-Chloride-and-Sulfate.aspx|publisher=Food and Nutrition Board,{{le|医学研究所 (美国国家学院)|Institute of Medicine|Institute of Medicine}}, [[美国国家学院|United States National Academies]]|date=2004-02-11|accessdate=2011-11-23|deadurl=yes|archiveurl=https://web.archive.org/web/20111006174858/http://www.iom.edu/Reports/2004/Dietary-Reference-Intakes-Water-Potassium-Sodium-Chloride-and-Sulfate.aspx|archivedate=2011-10-06}}</ref>然而根据2010年的调查,中国城市居民平均每日摄入的钠相当于13.5g食盐(5.31 g钠)。<ref name="chinese_salt">{{cite web | url=http://bjwb.bjd.com.cn/html/2013-08/26/content_102817.htm | title=近六成居民食盐量偏高 | date=2013年8月26日 | accessdate=2013年10月20日 | deadurl=yes | archiveurl=https://web.archive.org/web/20131020122728/http://bjwb.bjd.com.cn/html/2013-08/26/content_102817.htm | archivedate=2013年10月20日 }}</ref>而每天摄入的钠超过2.3克就会提高患高血压的几率。<ref>{{cite journal|pmid=15369026|last1=Geleijnse|first1=J. M.|last2=Kok|first2=F. J.|last3=Grobbee|first3=D. E.|title=Impact of dietary and lifestyle factors on the prevalence of hypertension in Western populations|volume=14|issue=3|pages=235–239|journal=European Journal of Public Health|doi=10.1093/eurpub/14.3.235|date=2004}}</ref> 由钠摄入过量导致的高血压每年在全球导致了760万例早逝。<ref>{{cite journal|pmid=18456100|url=http://www.worldactiononsalt.com/evidence/docs/thelancet_hypertension_05.08.pdf|archiveurl=https://web.archive.org/web/20120128072727/http://www.worldactiononsalt.com/evidence/docs/thelancet_hypertension_05.08.pdf|archivedate=2012-01-28|last1=Lawes|first1=C. M.|last2=Vander Hoorn|first2=S.|last3=Rodgers|first3=A.|author4=International Society of Hypertension|title=Global burden of blood-pressure-related disease, 2001|volume=371|issue=9623|pages=1513–1518|doi=10.1016/S0140-6736(08)60655-8|journal=Lancet|date=2008|deadurl=yes}}</ref>
 
钾是[[细胞]]内的主要[[阳离子]],<ref name="webelements-potassium">{{cite web|url=http://www.webelements.com/potassium/biology.html|title=WebElements Periodic Table of the Elements {{pipe}} Potassium {{pipe}} biological information|publisher=WebElements|author=Winter, Mark|accessdate=2012-01-13|archive-date=2012-01-21|archive-url=https://web.archive.org/web/20120121015604/http://www.webelements.com/potassium/biology.html|dead-url=no}}</ref>而钠是动物细胞外的主要阳离子。<ref name="webelements-potassium" /><ref name="webelements-sodium">{{cite web|url=http://www.webelements.com/sodium/biology.html|title=WebElements Periodic Table of the Elements {{pipe}} Sodium {{pipe}} biological information|publisher=WebElements|author=Winter, Mark|accessdate=2012-01-13|archive-date=2012-01-20|archive-url=https://web.archive.org/web/20120120022258/http://www.webelements.com/sodium/biology.html|dead-url=no}}</ref> 这两种带电粒子的[[浓度]]差异导致了细胞内外的[[电势]]差,也就是[[膜电势]]。细胞膜两侧的钠钾浓度平衡由[[细胞膜]]内的[[离子泵]]维持。<ref name="pmid16253415">{{cite journal |author=Mikko Hellgren, Lars Sandberg, Olle Edholm |title=A comparison between two prokaryotic potassium channels (K<sub>ir</sub>Bac1.1 and KcsA) in a molecular dynamics (MD) simulation study|journal=Biophys. Chem. |volume=120 |issue=1 |pages=1–9 |pmid=16253415 |doi=10.1016/j.bpc.2005.10.002|date=2006}}</ref>由钠钾浓度差产生的膜电势让细胞可以产生[[动作电位]]——一次急剧的细胞放电过程。细胞放电的能力是很多种身体机能({{le|神经传导|neurotransmission}}、肌肉收缩、心脏功能等)的基础。<ref name="pmid16253415"/>
 
[[File:GoiâniaRadiationsource.gif|thumb|400px|right|一种轮形放疗仪,配有一台长的{{le|准直仪|collimator}}用来将放射线聚焦为狭窄的射线流。放射源为氯化铯-137(<sup>137</sup>CsCl),用蓝色方块表示;从光圈中射出的浅蓝色射线表示仪器的γ射线。1987年戈亚尼亚放射事故中用到的就是这种放射源,内含约93克氯化铯-137. ]]
铷没有已知的生物学作用,不过或许可能促进[[代谢]]。<ref name="webelements-rubidium">{{cite web |publisher=Webelements |title=WebElements Periodic Table of the Elements{{pipe}} Rubidium {{pipe}} biological information |url=http://www.webelements.com/rubidium/biology.html |author=Winter, Mark |accessdate=2011-02-15 |archive-date=2011-06-28 |archive-url=https://web.archive.org/web/20110628183233/http://www.webelements.com/rubidium/biology.html |dead-url=no }}</ref><ref>{{cite journal |last1 = Relman |first1 = AS |title =The Physiological Behavior of Rubidium and Cesium in Relation to That of Potassium |journal = The Yale journal of biology and medicine |volume = 29 |issue = 3 |pages = 248–62 | pmid = 13409924|pmc = 2603856|date=1956}}</ref><ref name="jcp.sagepub.com">{{cite journal | last1 = Meltzer | first1 = HL | title = A pharmacokinetic analysis of long-term administration of rubidium chloride | url = http://jcp.sagepub.com/content/31/2/179 | journal = Journal of clinical pharmacology | volume = 31 | issue = 2 | pages = 179–84 | pmid = 2010564 | date = 1991 | deadurl = yes | archiveurl = https://archive.is/20120709223213/http://jcp.sagepub.com/content/31/2/179 | archivedate = 2012-07-09 }}</ref>由于钾、铷、铯的化学性质相似,铷和铯有可能取代身体中的钾离子引发[[低钾血症]],因此它们具有轻微的毒性。<ref name="webelements-rubidium" /><ref name="jcp.sagepub.com"/><ref name="webelements-caesium">{{cite web|url=http://www.webelements.com/caesium/biology.html|title=WebElements Periodic Table of the Elements {{pipe}} Caesium {{pipe}} biological information|publisher=WebElements|author=Winter, Mark|accessdate=2012-01-13|archive-date=2012-02-11|archive-url=https://web.archive.org/web/20120211134514/http://webelements.com/caesium/biology.html|dead-url=no}}</ref>绝大多数人极少摄入铯。摄入大量的铯会导致[[过敏|剧烈过敏]]和[[痉挛]],但通常不可能通过自然途径摄入这种剂量的铯,因此铯不属于主要化学污染物。<ref>{{cite journal|doi = 10.1080/10934528109375003|title = Cesium in mammals: Acute toxicity, organ changes and tissue accumulation|last1 = Pinsky|first1 = Carl|first2 = Ranjan|first3 = J. R.|first4 = Jasper|first5 = Claude|first6 = James|journal = Journal of Environmental Science and Health, Part A|volume = 16|pages = 549– 567 |last2 = Bose|last3 = Taylor|last4 = McKee|last5 = Lapointe|last6 = Birchall|issue = 5|date=1981}}</ref> [[氯化铯]]在小鼠身上的[[半数致死量|LD<sub>50</sub>]]为2.3&nbsp;g 每千克体重,和[[氯化钾]]、[[氯化钠]]的LD<sub>50</sub>相仿。<ref>{{cite journal|doi = 10.1016/0041-008X(75)90216-1|title = Acute toxicity of cesium and rubidium compounds|last1 = Johnson|first1 = Garland T.|journal = {{le|毒理学和应用药理学|Toxicology and Applied Pharmacology|Toxicology and Applied Pharmacology}}|volume = 32|pages = 239–245|pmid = 1154391|first2 = Trent R.|first3 = D. Wagner|issue = 2|last2 = Lewis|last3 = Wagner|date=1975}}</ref>一些癌症替代疗法用氯化铯作为治疗药物,<ref>{{cite journal | author = Sartori H. E. | title = Cesium therapy in cancer patients | url = | journal = Pharmacol Biochem Behav | volume = 21 | issue = Suppl 1| pages = 11–13 | pmid = 6522427 | doi = 10.1016/0091-3057(84)90154-0 |date=1984}}</ref>这种未经科学证实的疗法可能和至少50名患者的死亡有联系。<ref>Wood, Leonie. {{cite web |url=http://www.smh.com.au/lifestyle/lifematters/cured-cancer-patients-died-court-told-20101119-180z9.html |title='Cured' cancer patients died, court told |work=The Sydney Morning Herald |date=2010-11-20 |accessdate=2013-10-19 |archive-date=2011-06-29 |archive-url=https://web.archive.org/web/20110629164422/http://www.smh.com.au/lifestyle/lifematters/cured-cancer-patients-died-court-told-20101119-180z9.html |dead-url=no }}</ref> 铯的[[放射性同位素]]需要格外小心处理,若对[[铯-137]][[γ射线|γ放射源]]处理不当,可能导致这种放射性核素泄露,引发辐射伤害。最著名的例子是1987年的戈亚尼亚事故:[[巴西]][[戈亚尼亚]]的一处废品堆积场中扫出了一台放疗仪,这台放疗仪属于一家废弃的诊所,未经妥善处理。放疗仪中发光的[[氯化铯|铯盐]]被卖给了好奇又缺乏教育的买家。事件造成了4人死亡及大量的辐射伤害。铯-137是[[切尔诺贝利核事故]]释放的对健康威胁最大的四种放射性同位素之一(另外三种为铯-134、[[碘-131]]和[[锶-90]])。<ref name="IAEA"/>
 
钫没有生物学功能。<ref name="webelements-francium">{{cite web|url=http://www.webelements.com/francium/biology.html|title=WebElements Periodic Table of the Elements {{pipe}} Francium {{pipe}} biological information|publisher=WebElements|author=Winter, Mark|accessdate=2011-02-15|archive-date=2011-06-28|archive-url=https://web.archive.org/web/20110628183305/http://www.webelements.com/francium/biology.html|dead-url=no}}</ref>其强放射性可能引发[[急性辐射综合症|辐射中毒]],因此钫极可能有毒。 <ref name="rsc-francium">{{cite web |url=http://www.rsc.org/periodic-table/element/87/Francium |title=Francium – Element information, properties and uses {{pipe}} Periodic Table |work=Visual Elements Periodic Table |publisher=[[英国皇家化学学会|Royal Society of Chemistry]] |accessdate=2012-06-27 |date=2012 |archive-date=2012-06-02 |archive-url=https://web.archive.org/web/20120602125346/http://www.rsc.org/periodic-table/element/87/francium |dead-url=no }}</ref> 然而至今为止最大的钫样品只有约300,000个中性钫原子,<ref name="chemnews" />因此绝大多数人不可能摄入钫。