The oscillatory rotational motion of the elephant pinna is considered a key mechanism in metabolic heat dissipation. Limited experimental investigations have revealed that the flapping of the elephant's pinna is responsible for surface heat transfer enhancement. The objective of the present experimental and computational work is to investigate the physics of the flow induced by the pinna's motion and its effects on the heat transfer. This was accomplished by designing, fabricating and testing two full-size laboratory models of elephant pinnae: one rigid and one flexible, both instrumented with small size thermocouples for time-dependent surface temperature measurements. A constant heat flux is applied to both sides of each model which is rotated about a fixed edge with a frequency of 2 rad/s in an infinite domain at ambient conditions. Of interest is the study of the impact of the flexural strength of the model's material on surface heat transfer. Additional computer simulations of the flow and thermal fields revealed a hooked-shape vortex tube around the free edges of the flapping pinna. This result is confirmed by the flow visualization with smoke particles. Both experimental and computational results exhibit local surface temperature profiles characterized by a transient unsteady periodic variation followed by a steady periodic phase. Flow visualization indicated significant interaction between the vortical structures shed off the edge and the flexible model's boundary layer. It has been found that the cooling of the flexible model is enhanced by 30%.

References

1.
Benedict
,
F. G.
,
1936
,
The Physiology of the Elephant
,
Carnegie Institute
,
Washington, DC
.
2.
Wright
,
P. G.
,
1984
, “
Why Do Elephants Flap Their Ears?
,”
S. Afr. J. Zool.
,
19
, pp.
266
269
.
3.
Mortola
,
J. P.
,
2013
, “
Thermographic Analysis of Body Surface Temperature of Mammals
,”
Zool. Sci.
,
30
(
2
), pp.
118
124
.10.2108/zsj.30.118
4.
Rowe
,
M. F.
,
Bakken
,
G. S.
,
Ratliff
,
J.
, and
Langman
, V
. A.
,
2013
, “
Heat Storage in Asian Elephants During Submaximal Exercise: Behavioral Regulation of Thermoregulatory Constraints on Activity in Endothermic Gigantotherms
,”
J. Exp. Biol.
,
216
, pp.
1774
1785
.10.1242/jeb.076521
5.
Weissenböck
,
N. M.
,
Arnold
,
W.
, and,
Ruf
,
T.
,
2012
, “
Taking the Heat: Thermoregulation in Asian Elephants Under Different Climatic Conditions
,”
J. Comp. Physiol. B
,
182
, pp.
311
319
.10.1007/s00360-011-0609-8
6.
Hidden
,
P. A.
,
2009
, “
Thermoregulation in African Elephants (Loxodonta Africana)
,” M.Sc. thesis, University of Witwatersrand, Johannesburg, South Africa.
7.
Mc Ginnis
,
S. M.
, and
Southworth
,
T. P.
,
1971
, “
Thermoregulation in the Northern Elephant Seal, Mirounga Angustirostris
,”
Comp. Biochem. Physiol. Part A: Physiol.
,
40
, pp.
893
898
.10.1016/0300-9629(71)90278-7
8.
Rees
,
A. P.
,
2002
, “
Asian Elephants (Elephas Maximus) Dust Bathe in Response to an Increase in Environmental Temperature
,”
J. Therm. Biol.
,
27
, pp.
353
358
.10.1016/S0306-4565(01)00100-0
9.
Joshi
,
R.
,
2009
, “
Asian Elephant's (Elephas maximus) Behaviour in the Rajaji National Park, North-West India: Eight Years with Asian Elephants
,”
Nat. Sci.
,
7
(
1
), pp.
49
77
.
10.
Phillips
,
P. K.
, and
Heath
,
J. E.
,
1995
, “
Dependency of Surface Temperature Regulation on Body Size in Terrestrial Mammals
,”
J. Therm. Biol.
,
20
(
3
), pp.
281
289
.10.1016/0306-4565(94)00061-M
11.
Xue
,
X.
, and
Liu
,
J.
,
2011
, “
Mechanism Interpretation of the Biological Brain Cooling and Its Inspiration on Bionic Engineering
,”
J. Bion. Eng.
,
8
, pp.
207
222
.10.1016/S1672-6529(11)60030-9
12.
Rowe
,
M. F.
,
Bakken
,
G. S.
,
Ratliff
,
J.
, and
Hagan
,
D.
,
2012
, “
Seasonal Biophysical Variations in Resting and Exercising Elephants: Energetic, Thermoregulatory, and Behavioral Adaptions
,” Ph.D. dissertation, Department of Biology, Indiana State University, Terre Haute, IN.
13.
Weissenböck
,
N. M.
,
Weiss
,
C. M.
,
Schwammer
,
H. M.
, and
Kratochvil
,
H.
,
2010
, “
Thermal Windows on the Body Surface of African Elephants (Loxodonta Africana)
,”
J. Therm. Biol.
,
35
, pp.
182
188
.10.1016/j.jtherbio.2010.03.002
14.
Crawford
,
E.
,
2012
, “
An Elephant Never Forgets the Right Microclimate: Thermal Comfort and Microclimatic Design of Asian Elephant Zoo Enclosures
,” Master's thesis, The University of Guelph, Ontario, Canada.
15.
Williams
,
T. M.
,
1990
, “
Heat Transfer in Elephants: Thermal Partitioning Based on Skin Temperature Profile
,”
J. Zool.
,
222
, pp.
235
245
.10.1111/j.1469-7998.1990.tb05674.x
16.
Datta
,
A. K.
,
2002
,
Biological and Bioenvironmental Heat and Mass Transfer
,
Marcel Dekker
,
New York
.
17.
Buss
,
I. O.
, and
Estes
,
J. A.
,
1971
, “
The Functional Significance of Movements and Positions of the Pinnae of the African Elephant. Loxodonta Africana
,”
J. Mammal.
,
52
, pp.
21
27
.10.2307/1378428
18.
Colbert
,
E. H.
,
1993
, “
Feeding Strategies and Metabolism in Elephants and Sauropod Dinosaurs
,”
Am. J. Sci.
,
293A
, pp.
1
19
.10.2475/ajs.293.A.1
19.
Sikes
,
S. K.
,
1971
,
The Natural History of the African Elephant
,
Elsevier Ltd.
,
New York
.
20.
Kinahan
,
A. A.
,
Inge-moller
,
R.
,
Baterman
,
P. W.
,
Kotze
,
A.
, and
Scantlebury
,
M.
,
2007
, “
Body Temperature Daily Rhythm Adaptations in African Savanna Elephants (Loxodonta Africana)
,”
J. Physiol. Behav.
,
92
, pp.
560
565
.10.1016/j.physbeh.2007.05.001
21.
Vanitha
,
V.
, and
Baskaran
,
N.
,
2010
, “
Seasonal and Roofing Material Influence on the Thermoregulation by Captive Asian Elephants and Its Implications for Captive Elephant Welfare
,”
J. IUCN/SSC Asian Elephant Spec. Group
,
33
, pp.
35
40
.
22.
Benedict
,
F. G.
,
Fox
,
E. L.
, and
Baker
,
M. L.
,
1921
, “
The Surface Temperature of the Elephant, the Rhinoceros and Hippopotamus
,”
“Am. J. Physiol.
,
56
, pp.
464
474
.
23.
Phillips
,
P. K.
, and
Heath
,
J. E.
,
1992
, “
Heat Exchange by the Pinna of the African Elephant (Loxodonta Africana)
,”
Comp. Biochem. Physiol.
,
101
(
4
), pp.
693
699
.10.1016/0300-9629(92)90345-Q
24.
Phillips
,
P. K.
, and
Heath
,
J. E.
,
2001
, “
Heat Loss in Dumbo: A Theoretical Approach
,”
J. Therm. Biol.
,
26
, pp.
117
120
.10.1016/S0306-4565(00)00031-0
25.
Pierides
,
A.
,
Elzawawy
,
A.
, and
Andreopoulos
,
Y.
,
2013
, “
Transient Force Generation During Impulsive Rotation of Flat Panels Embedded in Boundary Layers
,”
J. Fluid Mech.
,
721
, pp.
403
437
.10.1017/jfm.2013.52
You do not currently have access to this content.