Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2011;14(1):67-77.
doi: 10.18433/j30c7d.

Nanotherapeutics to overcome conventional cancer chemotherapy limitations

Affiliations
Free article
Review

Nanotherapeutics to overcome conventional cancer chemotherapy limitations

Moorthi Chidambaram et al. J Pharm Pharm Sci. 2011.
Free article

Abstract

Cancer is one of the major causes of death worldwide and chemotherapy is a major therapeutic approach for the treatment which may be used alone or combined with other forms of therapy. However, conventional chemotherapy suffers lack of aqueous solubility, lack of selectivity and multidrug resistance. Nanotherapeutics is rapidly progressing aimed to solve several limitations of conventional drug delivery systems. Nonspecific target of cancer chemotherapy leads to damage rapidly proliferating normal cells and can be significantly reduced through folate and transferrin mediated nanotherapeutics which are aimed to target cancerous cells. Multidrug resistance is challenge in cancer chemotherapy which can be significantly reversed by solid lipid nanoparticles, polymeric nanoparticles, mesoporous silica nanoparticles, nanoparticulated chemosensitizer, nanoparticluated poloxamer and magnetic nanoparticles. Hydrophobic nature of chemotherapeutics leads to poor aqueous solubility and low bioavailability which can be overcome by nanocrystals, albumin based nanoparticles, liposomal formulation, polymeric micelles, cyclodextrin and chitosan based nanoparticles. This review focuses the role of nanotherapeutics to overcome lack of selectivity, multidrug resistance and lack of aqueous solubility of conventional cancer chemotherapy.

PubMed Disclaimer

Similar articles

Cited by

Substances

LinkOut - more resources