We numerically studied magnetic reconnection in a high β hydrogen–helium plasma at different altitudes from the photosphere to the upper chromosphere. The time-dependent ionization degrees were included to get more realistic diffusivities and viscosity, and appropriate radiative cooling models were applied. Our numerical results indicate that the plasmoid instability always plays a vital role in speeding up magnetic reconnection at different atmospheric layers. In addition, both the strong radiative cooling and the magnetic diffusion caused by the electron–neutral collision (ηen) can significantly accelerate magnetic reconnection below the middle chromosphere. On the other hand, both the ambipolar diffusion and the viscosity result in higher temperature and plasma pressure in the reconnection region in the upper chromosphere, which then hinders the fast reconnection process from developing. The local compression heating triggered by turbulent reconnection mediated with plasmoids is the dominant heating mechanism in the unstable reconnection stage at different atmospheric layers, but the viscous heating and the ambipolar diffusion heating are equally important in the upper chromosphere. The Joule heating contributed by ηen dominates during the early quasi-steady reconnection stage below the middle chromosphere, the strong radiative cooling also leads to much stronger compression heating and more generation of thermal energy in this region. Though the plasma β is the same in all the simulation cases at different altitudes, the temperature increase is more significant in the upper chromosphere with much lower density and weaker radiative cooling.

1.
K.
Shibata
and
T.
Magara
, “
Solar flares: Magnetohydrodynamic processes
,”
Living Rev. Sol. Phys.
8
,
6
(
2011
).
2.
Y.
Su
,
A. M.
Veronig
,
G. D.
Holman
,
B. R.
Dennis
,
T.
Wang
,
M.
Temmer
, and
W.
Gan
, “
Imaging coronal magnetic-field reconnection in a solar flare
,”
Nat. Phys.
9
,
489
493
(
2013
).
3.
A.
Retinò
,
D.
Sundkvist
,
A.
Vaivads
,
F.
Mozer
,
M.
André
, and
C.
Owen
, “
In situ evidence of magnetic reconnection in turbulent plasma
,”
Nat. Phys.
3
,
235
238
(
2007
).
4.
R.
Hastie
, “
Sawtooth instability in tokamak plasmas
,”
Astrophys. Space Sci.
256
,
177
204
(
1997
).
5.
M.
Yamada
, “
Mechanisms of impulsive magnetic reconnection: Global and local aspects
,”
Phys. Plasmas
18
,
111212
(
2011
).
6.
J.
Lin
,
Y.-K.
Ko
,
L.
Sui
,
J.
Raymond
,
G.
Stenborg
,
Y.
Jiang
,
S.
Zhao
, and
S.
Mancuso
, “
Direct observations of the magnetic reconnection site of an eruption on 2003 November 18
,”
Astrophys. J.
622
,
1251
(
2005
).
7.
J.
Lin
,
J.
Li
,
T.
Forbes
,
Y.-K.
Ko
,
J.
Raymond
, and
A.
Vourlidas
, “
Features and properties of coronal mass ejection/flare current sheets
,”
Astrophys. J.
658
,
L123
(
2007
).
8.
Y.
Shen
, “
Observation and modelling of solar jets
,”
Proc. R. Soc. A
477
,
20200217
(
2021
).
9.
A. C.
Sterling
,
R. L.
Moore
,
D. A.
Falconer
,
N. K.
Panesar
,
S.
Akiyama
,
S.
Yashiro
, and
N.
Gopalswamy
, “
Minifilament eruptions that drive coronal jets in a solar active region
,”
Astrophys. J.
821
,
100
(
2016
).
10.
Y.
Shen
,
Y. D.
Liu
,
J.
Su
,
Z.
Qu
, and
Z.
Tian
, “
On a solar blowout jet: Driving mechanism and the formation of cool and hot components
,”
Astrophys. J.
851
,
67
(
2017
).
11.
J. W.
Brosius
and
G. D.
Holman
, “
Observations of the thermal and dynamic evolution of a solar microflare
,”
Astrophys. J.
692
,
492
(
2009
).
12.
A.
Kirichenko
and
S.
Bogachev
, “
Plasma heating in solar microflares: Statistics and analysis
,”
Astrophys. J.
840
,
45
(
2017
).
13.
P. J.
Wright
,
I. G.
Hannah
,
B. W.
Grefenstette
,
L.
Glesener
,
S.
Krucker
,
H. S.
Hudson
,
D. M.
Smith
,
A. J.
Marsh
,
S. M.
White
, and
M.
Kuhar
, “
Microflare heating of a solar active region observed with NuSTAR, Hinode/XRT, and SDO/AIA
,”
Astrophys. J.
844
,
132
(
2017
).
14.
E. N.
Parker
, “
Sweet's mechanism for merging magnetic fields in conducting fluids
,”
J. Geophys. Res.
62
,
509
520
, https://doi.org/10.1029/JZ062i004p00509 (
1957
).
15.
P. A.
Sweet
, “
The neutral point theory of solar flares
,” in
Electromagnetic Phenomena in Cosmical Physics
, edited by
B.
Lehnert
(
Cambridge University Press
,
1958
), Vol.
6
, p.
123
.
16.
E. G.
Zweibel
and
M.
Yamada
, “
Magnetic reconnection in astrophysical and laboratory plasmas
,”
Annu. Rev. Astron. Astrophys.
47
,
291
332
(
2009
).
17.
N.
Loureiro
,
A.
Schekochihin
, and
S.
Cowley
, “
Instability of current sheets and formation of plasmoid chains
,”
Phys. Plasmas
14
,
100703
(
2007
).
18.
A.
Bhattacharjee
,
Y.-M.
Huang
,
H.
Yang
, and
B.
Rogers
, “
Fast reconnection in high-Lundquist-number plasmas due to the plasmoid instability
,”
Phys. Plasmas
16
,
112102
(
2009
).
19.
D.
Biskamp
, “
Magnetic reconnection via current sheets
,”
Phys. Fluids
29
,
1520
1531
(
1986
).
20.
R.
Samtaney
,
N.
Loureiro
,
D.
Uzdensky
,
A.
Schekochihin
, and
S.
Cowley
, “
Formation of plasmoid chains in magnetic reconnection
,”
Phys. Rev. Lett.
103
,
105004
(
2009
).
21.
L.
Ni
,
K.
Germaschewski
,
Y.-M.
Huang
,
B. P.
Sullivan
,
H.
Yang
, and
A.
Bhattacharjee
, “
Linear plasmoid instability of thin current sheets with shear flow
,”
Phys. Plasmas
17
,
052109
(
2010
).
22.
Y.-K.
Ko
,
J. C.
Raymond
,
J.
Lin
,
G.
Lawrence
,
J.
Li
, and
A.
Fludra
, “
Dynamical and physical properties of a post-coronal mass ejection current sheet
,”
Astrophys. J.
594
,
1068
(
2003
).
23.
Q.
Zhang
,
H.
Ji
, and
Y.
Su
, “
Observations of multiple blobs in homologous solar coronal jets in closed loop
,”
Sol. Phys.
291
,
859
876
(
2016
).
24.
K.
Singh
,
H.
Isobe
,
N.
Nishizuka
,
K.
Nishida
, and
K.
Shibata
, “
Multiple plasma ejections and intermittent nature of magnetic reconnection in solar chromospheric anemone jets
,”
Astrophys. J.
759
,
33
(
2012
).
25.
L.
Li
,
J.
Zhang
,
H.
Peter
,
E.
Priest
,
H.
Chen
,
L.
Guo
,
F.
Chen
, and
D.
Mackay
, “
Magnetic reconnection between a solar filament and nearby coronal loops
,”
Nat. Phys.
12
,
847
851
(
2016
).
26.
L.
Ni
,
I. I.
Roussev
,
J.
Lin
, and
U.
Ziegler
, “
Impact of temperature-dependent resistivity and thermal conduction on plasmoid instabilities in current sheets in the solar corona
,”
Astrophys. J.
758
,
20
(
2012
).
27.
J.
Ye
,
C.
Shen
,
J. C.
Raymond
,
J.
Lin
, and
U.
Ziegler
, “
Numerical study of the cascading energy conversion of the reconnection current sheet in solar eruptions
,”
Mon. Not. R. Astron. Soc.
482
,
588
605
(
2019
).
28.
Z.
Mei
,
R.
Keppens
,
I.
Roussev
, and
J.
Lin
, “
Magnetic reconnection during eruptive magnetic flux ropes
,”
Astron. Astrophys.
604
,
L7
(
2017
).
29.
Y.
Wang
,
X.
Cheng
,
Z.
Ren
, and
M.
Ding
, “
Current-sheet oscillations caused by the Kelvin–Helmholtz instability at the loop top of solar flares
,”
Astrophys. J. Lett.
931
,
L32
(
2022
).
30.
X.
Zhao
,
F.
Bacchini
, and
R.
Keppens
, “
Magnetic island merging: Two-dimensional MHD simulation and test-particle modeling
,”
Phys. Plasmas
28
,
092113
(
2021
).
31.
C.
Dong
,
L.
Wang
,
Y.-M.
Huang
,
L.
Comisso
,
T. A.
Sandstrom
, and
A.
Bhattacharjee
, “
Reconnection-driven energy cascade in magnetohydrodynamic turbulence
,”
Sci. Adv.
8
,
eabn7627
(
2022
).
32.
B.
Zhu
,
H.
Yan
,
Y.
Zhong
,
J.
Chen
,
Y.
Du
,
H.
Cheng
, and
D. A.
Yuen
, “
Relativistic HPIC-LBM and its application in large temporal-spatial turbulent magnetic reconnection. Part I. Model development and validation
,”
Appl. Math. Modell.
78
,
932
967
(
2020
).
33.
B.
Zhu
,
H.
Yan
,
Y.
Zhong
,
J.
Chen
,
Y.
Du
,
H.
Cheng
, and
D. A.
Yuen
, “
Relativistic HPIC-LBM and its application in large temporal-spatial turbulent magnetic reconnection. Part II. Role of turbulence in the flux rope interaction
,”
Appl. Math. Modell.
78
,
968
988
(
2020
).
34.
K.
Shibata
,
T.
Nakamura
,
T.
Matsumoto
,
K.
Otsuji
,
T. J.
Okamoto
,
N.
Nishizuka
,
T.
Kawate
,
H.
Watanabe
,
S.
Nagata
,
S.
UeNo
et al, “
Chromospheric anemone jets as evidence of ubiquitous reconnection
,”
Science
318
,
1591
1594
(
2007
).
35.
K.
Singh
,
K.
Shibata
,
N.
Nishizuka
, and
H.
Isobe
, “
Chromospheric anemone jets and magnetic reconnection in partially ionized solar atmosphere
,”
Phys. Plasmas
18
,
111210
(
2011
).
36.
F.
Ellerman
, “
Solar hydrogen ‘bombs’
,”
Astrophys. J.
46
,
298
(
1917
).
37.
M. K.
Georgoulis
,
D. M.
Rust
,
P. N.
Bernasconi
, and
B.
Schmieder
, “
Statistics, morphology, and energetics of Ellerman bombs
,”
Astrophys. J.
575
,
506
(
2002
).
38.
A.
Reid
,
M.
Mathioudakis
,
J. G.
Doyle
,
E.
Scullion
,
C.
Nelson
,
V.
Henriques
, and
T.
Ray
, “
Magnetic flux cancellation in Ellerman bombs
,”
Astrophys. J.
823
,
110
(
2016
).
39.
H.
Peter
,
H.
Tian
,
W.
Curdt
,
D.
Schmit
,
D.
Innes
,
B.
De Pontieu
,
J.
Lemen
,
A.
Title
,
P.
Boerner
,
N.
Hurlburt
et al, “
Hot explosions in the cool atmosphere of the sun
,”
Science
346
,
1255726
(
2014
).
40.
H.
Tian
,
Z.
Xu
,
J.
He
, and
C.
Madsen
, “
Are IRIS bombs connected to Ellerman bombs?
,”
Astrophys. J.
824
,
96
(
2016
).
41.
D.
Berghmans
,
F.
Auchère
,
D. M.
Long
,
E.
Soubrié
,
M.
Mierla
,
A. N.
Zhukov
,
U.
Schühle
,
P.
Antolin
,
L.
Harra
,
S.
Parenti
et al, “
Extreme-UV quiet sun brightenings observed by the Solar Orbiter/EUI
,”
Astron. Astrophys.
656
,
L4
(
2021
).
42.
N.
Alipour
,
H.
Safari
,
C.
Verbeeck
,
D.
Berghmans
,
F.
Auchère
,
L.
Chitta
,
P.
Antolin
,
K.
Barczynski
,
É.
Buchlin
,
R. A.
Cuadrado
et al, “
Automatic detection of small-scale EUV brightenings observed by the Solar Orbiter/EUI
,”
Astron. Astrophys.
663
,
A128
(
2022
).
43.
L.
Ni
,
Y.
Chen
,
H.
Peter
,
H.
Tian
, and
J.
Lin
, “
A magnetic reconnection model for hot explosions in the cool atmosphere of the Sun
,”
Astron. Astrophys.
646
,
A88
(
2021
).
44.
M.
Liu
,
L.
Ni
,
G.
Cheng
,
U.
Ziegler
, and
J.
Lin
, “
Numerical studies of magnetic reconnection and heating mechanisms for the Ellerman bomb
,”
Res. Astron. Astrophys.
23
,
035006
(
2023
).
45.
F.
Heitsch
and
E. G.
Zweibel
, “
Fast reconnection in a two-stage process
,”
Astrophys. J.
583
,
229
(
2003
).
46.
F.
Heitsch
and
E. G.
Zweibel
, “
Suppression of fast reconnection by magnetic shear
,”
Astrophys. J.
590
,
291
(
2003
).
47.
A.
Brandenburg
and
E. G.
Zweibel
, “
The formation of sharp structures by ambipolar diffusion
,”
Astrophys. J.
427
,
L91
L94
(
1994
).
48.
J. E.
Leake
,
V. S.
Lukin
,
M. G.
Linton
, and
E. T.
Meier
, “
Multi-fluid simulations of chromospheric magnetic reconnection in a weakly ionized reacting plasma
,”
Astrophys. J.
760
,
109
(
2012
).
49.
J. E.
Leake
,
V. S.
Lukin
, and
M. G.
Linton
, “
Magnetic reconnection in a weakly ionized plasma
,”
Phys. Plasmas
20
,
061202
(
2013
).
50.
G.
Murtas
,
A.
Hillier
, and
B.
Snow
, “
Coalescence instability in chromospheric partially ionized plasmas
,”
Phys. Plasmas
28
,
032901
(
2021
).
51.
D. A.
Uzdensky
and
J. C.
McKinney
, “
Magnetic reconnection with radiative cooling. I. Optically thin regime
,”
Phys. Plasmas
18
,
042105
(
2011
).
52.
E.
Provornikova
,
J. M.
Laming
, and
V. S.
Lukin
, “
Plasma compression in magnetic reconnection regions in the solar corona
,”
Astrophys. J.
825
,
55
(
2016
).
53.
L.
Ni
,
B.
Kliem
,
J.
Lin
, and
N.
Wu
, “
Fast magnetic reconnection in the solar chromosphere mediated by the plasmoid instability
,”
Astrophys. J.
799
,
79
(
2015
).
54.
L.
Ni
and
V. S.
Lukin
, “
Onset of secondary instabilities and plasma heating during magnetic reconnection in strongly magnetized regions of the low solar atmosphere
,”
Astrophys. J.
868
,
144
(
2018
).
55.
J.
Jara-Almonte
,
H.
Ji
,
J.
Yoo
,
M.
Yamada
,
W.
Fox
, and
W.
Daughton
, “
Kinetic simulations of magnetic reconnection in partially ionized plasmas
,”
Phys. Rev. Lett.
122
,
015101
(
2019
).
56.
U.
Ziegler
, “
A semi-discrete central scheme for magnetohydrodynamics on orthogonal–curvilinear grids
,”
J. Comput. Phys.
230
,
1035
1063
(
2011
).
57.
E.
Khomenko
and
M.
Collados
, “
Heating of the magnetized solar chromosphere by partial ionization effects
,”
Astrophys. J.
747
,
87
(
2012
).
58.
L.
Ni
,
G.
Cheng
, and
J.
Lin
, “
Plausibility of ultraviolet burst generation in the low solar chromosphere
,”
Astron. Astrophys.
665
,
A116
(
2022
).
59.
J.
Vranjes
and
P.
Krstic
, “
Collisions, magnetization, and transport coefficients in the lower solar atmosphere
,”
Astron. Astrophys.
554
,
A22
(
2013
).
60.
L.
Ni
,
H.
Ji
,
N. A.
Murphy
, and
J.
Jara-Almonte
, “
Magnetic reconnection in partially ionized plasmas
,”
Proc. R. Soc. A
476
,
20190867
(
2020
).
61.
J.
Barata
and
C.
Conde
, “
Elastic He+ on He collision cross-sections and Monte Carlo calculation of the transport coefficients of He+ ions in gaseous helium
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
619
,
21
23
(
2010
).
62.
M.
Carlsson
and
J.
Leenaarts
, “
Approximations for radiative cooling and heating in the solar chromosphere
,”
Astron. Astrophys.
539
,
A39
(
2012
).
63.
W.
Gan
and
C.
Fang
, “
A hydrodynamic model of the gradual phase of the solar flare loop
,”
Astrophys. J.
358
,
328
337
(
1990
).
64.
W. P.
Abbett
and
G. H.
Fisher
, “
Radiative cooling in MHD models of the quiet Sun convection zone and corona
,”
Sol. Phys.
277
,
3
20
(
2012
).
65.
C.
Fang
,
P.
Chen
, and
M.
Ding
, “
Magnetic reconnection in the solar lower atmosphere
,” in
COSPAR Colloquia Series
(
Elsevier
,
2002
), Vol.
14
, pp.
3
8
.
66.
G.-C.
Cheng
,
L.
Ni
,
Y.-J.
Chen
,
U.
Ziegler
, and
J.
Lin
, “
The Ellerman bomb and ultraviolet burst triggered successively by an emerging magnetic flux rope
,”
Res. Astron. Astrophys.
21
,
229
(
2021
).
67.
C. A.
Iglesias
and
F. J.
Rogers
, “
Updated opal opacities
,”
Astrophys. J.
464
,
943
(
1996
).
68.
J.
Leenaarts
and
M.
Carlsson
, “
Multi3d: A domain-decomposed 3d radiative transfer code
,” in
The Second Hinode Science Meeting: Beyond Discovery-Toward Understanding
(
Astronomical Society of the Pacific
,
2009
), Vol.
415
, p.
87
.
69.
E. H.
Avrett
and
R.
Loeser
, “
Models of the solar chromosphere and transition region from SUMER and HRTS observations: Formation of the extreme-ultraviolet spectrum of hydrogen, carbon, and oxygen
,”
Astrophys. J., Suppl. Ser.
175
,
229
(
2008
).
You do not currently have access to this content.