Abstract

Determining the physical properties of microlensing events depends on having accurate angular sizes of the source star. Using long baseline optical interferometry, we are able to measure the angular sizes of nearby stars with uncertainties ≤2 per cent. We present empirically derived relations of angular diameters which are calibrated using both a sample of dwarfs/subgiants and a sample of giant stars. These relations are functions of five colour indices in the visible and near-infrared, and have uncertainties of 1.8–6.5 per cent depending on the colour used. We find that a combined sample of both main-sequence and evolved stars of A–K spectral types is well fitted by a single relation for each colour considered. We find that in the colours considered, metallicity does not play a statistically significant role in predicting stellar size, leading to a means of predicting observed sizes of stars from colour alone.

1 INTRODUCTION

Precise stellar radius measurements are important for many subfields of astronomy, especially for exoplanet characterization. While precise radii are most readily applicable to transiting exoplanet characterization, they also correspond directly to stellar angular diameters. One notable application for such angular diameters is in constraining the physical properties of microlensing events, for example in distinguishing cases of self-lensing from those of Massive Compact Halo Objects lensing (Calchi Novati et al. 2010; Fukui et al. 2015).

Microlensing systems are often far too distant for direct measurements of the stellar angular size, prompting empirical means to determine stellar sizes from photometry alone.

The surface brightness of a star for a given magnitude is defined in terms of the magnitude and angular diameter (Wesselink 1969; Barnes & Evans 1976; Di Benedetto 2005):
(1)
where V0 is an intrinsic magnitude set such that SV = V0 when the angular diameter θ = 1 mas.

Wesselink (1969) demonstrates a strong empirical correlation between surface brightness and (B − V) colour; a more general correlation between surface brightnesses and colour indices has been shown in Barnes & Evans (1976). Therefore, we expect to be able to construct relations between stellar angular size, colour and an apparent magnitude from the given colour. Barnes & Evans (1976) further demonstrate that surface brightness is independent of stellar luminosity class, which implies that such an angular size–colour–magnitude relation should hold regardless of whether stars have evolved off the main sequence. Di Benedetto (2005) proposed, through a comparison of the empirical relations for both dwarf and giant stars, that there was enough overlap in the then available data to motivate a combined fit across evolutionary stages.

One photometric magnitude of each colour is used as a baseline for developing a zero-magnitude diameter, the angular diameter each star would appear to have if its apparent magnitude were zero in a selected band:
(2)
where θLD is the angular diameter after correction for limb-darkening and Q is the magnitude in a given band. We construct our relations as polynomials in colour. For a given colour (P − Q)
(3)
where N is an arbitrary order, taken to be the greatest statistically significant order when fitting the data. Determination of angular sizes from observed colours is insensitive to wavelength-dependent extinction for the precisions attainable through this analysis (Barnes & Evans 1976); therefore we neglect extinction correction.

The use of interferometry to measure the angular diameters of stars has played a major role in empirically constraining the radii of nearby stars. Our new relations benefit from recent precise angular diameter measurements of both main-sequence and evolved stars using optical interferometry. They extend the results of Boyajian, van Belle & von Braun (2014) with new data and more precise relations for both main-sequence and evolved stars, constructed for a more limited range of spectral types.

Section 2 describes the criteria for data selection and sources of angular diameters and photometry, and the methodology for fitting the data is presented in Section 3. We analyse the results in Section 4, including a comparison with previous works (Section 4.1).

2 DATA

We compile a list of stars with both V, IC, H and/or K magnitudes and precise angular diameters in Tables 1 and 2. A total of 57 distinct main-sequence stars are selected among all relations, with effective temperatures of 3927–9553 K (spectral types A1–M0), a mean angular diameter uncertainty of 0.013 mas and apparent V magnitudes of 0.03–7.70. The evolved sample contains 50 stars with effective temperatures of 3972–10 330 K (spectral types A1–M0), a mean angular diameter uncertainty of 0.043 mas and apparent V magnitudes of 1.16–6.18. The following subsections outline both the source information as well as selection and classification criteria.

Table 1.

Selected stellar properties – dwarfs.

HIPSp. TypeθLD (mas)VICHKθLD Ref.
3765K2.5V0.868 ± 0.0045.7404.780 ± 0.0271
3821F9V1.623 ± 0.0043.4602.020 ± 0.0501.821 ± 0.0602
4151F9V0.865 ± 0.0104.8004.210 ± 0.0273.560 ± 0.0502
4436A6V0.708 ± 0.0133.8603.700 ± 0.0273.370 ± 0.0603.365 ± 0.0713
5336K1V Fe-20.972 ± 0.0095.1704.360 ± 0.0274
7513F9V1.143 ± 0.0104.1003.500 ± 0.0272.990 ± 0.0502.841 ± 0.0805, 6
7981K1V1.000 ± 0.0045.2404.360 ± 0.0273.345 ± 0.0507
8102G8.5V2.080 ± 0.0303.4902.630 ± 0.0271.727 ± 0.0501.631 ± 0.0608
12 114K3V1.030 ± 0.0075.7904.740 ± 0.0273.542 ± 0.0501
12 777F7V1.103 ± 0.0094.1003.530 ± 0.0273.070 ± 0.0502.761 ± 0.0902
16 537K2V (k)2.126 ± 0.0143.7201.749 ± 0.0501.601 ± 0.0609
16 852F9IV-V1.081 ± 0.0144.2903.640 ± 0.0272.871 ± 0.1002
19 849K0.5V1.446 ± 0.0224.4303.530 ± 0.0271, 10
22 449F6IV-V1.419 ± 0.0273.1902.650 ± 0.0272.148 ± 0.0502.031 ± 0.06011, 2
24 813G1V0.981 ± 0.0154.6904.040 ± 0.0273.330 ± 0.0503.255 ± 0.0452
27 435G2V0.572 ± 0.0095.9704.499 ± 0.0507
27 913G0V CH-0.31.051 ± 0.0094.3903.050 ± 0.0502.971 ± 0.0702
32 349A0mA1Va5.959 ± 0.059−1.440−1.430 ± 0.027−1.387 ± 0.05012, 13, 14, 15, 16
32 362F5IV-V1.401 ± 0.0093.3502.870 ± 0.0272.111 ± 0.0602
35 350A3V0.835 ± 0.0133.5803.450 ± 0.0272
36 366F1V0.853 ± 0.0144.1603.780 ± 0.0272
37 279F5IV-V5.434 ± 0.0500.400−0.140 ± 0.027−0.569 ± 0.050−0.669 ± 0.05113, 17, 18, 19
40 843F6V0.706 ± 0.0135.1303.940 ± 0.0507
43 587K0IV-V0.711 ± 0.0045.9604.140 ± 0.05020
45 343M0.0V0.871 ± 0.0157.6404.253 ± 0.0501
46 733F0V1.133 ± 0.0093.6503.270 ± 0.0272.711 ± 0.0902
46 853F7V1.632 ± 0.0053.1702.610 ± 0.0272.025 ± 0.0501.951 ± 0.0702
47 080G8IV0.821 ± 0.0135.4003.770 ± 0.0502
51 459F8V0.794 ± 0.0144.8204.240 ± 0.0272
53 910A1IVspSr1.149 ± 0.0142.3402.380 ± 0.0272.361 ± 0.0602
56 997G8V0.910 ± 0.0095.3104.580 ± 0.0272
57 757F8.5IV-V1.431 ± 0.0063.5903.000 ± 0.0272.345 ± 0.0502.301 ± 0.0602
57 939G8. V P0.686 ± 0.0066.4205.570 ± 0.0272, 21
64 394G0V1.127 ± 0.0114.2303.620 ± 0.0272.923 ± 0.0502.851 ± 0.1002
64 924G7V1.073 ± 0.0054.7403.990 ± 0.02722
65 721G5V1.010 ± 0.0204.9704.190 ± 0.0273.320 ± 0.0505
66 249A2Van0.852 ± 0.0093.3803.280 ± 0.0273.050 ± 0.0502
67 927G0IV2.252 ± 0.0362.6802.080 ± 0.0271.390 ± 0.0501.291 ± 0.05113, 18, 23, 24
71 284F4VkF2mF10.841 ± 0.0134.4704.020 ± 0.0273.516 ± 0.0502
72 567F9IV-V0.569 ± 0.0115.8604.530 ± 0.0507
72 659G7V1.196 ± 0.0144.5403.000 ± 0.0502.651 ± 0.0802
78 459G0V0.735 ± 0.0145.3903.945 ± 0.0503.901 ± 0.04522
81 300K0V (k)0.724 ± 0.0115.7703.910 ± 0.0501
91 262A1V3.280 ± 0.0100.0300.080 ± 0.0270.004 ± 0.050−0.079 ± 0.06013, 16, 25, 26, 27
92 043F5.5IV-V1.000 ± 0.0064.1903.660 ± 0.0272.941 ± 0.0902
93 747A1V0.895 ± 0.0172.9902.990 ± 0.0272.921 ± 0.0802
96 100G9V1.254 ± 0.0124.6703.850 ± 0.0272.811 ± 0.0804
96 441F3+ V0.844 ± 0.0094.4904.020 ± 0.0272, 6
96 895G1.5V0.554 ± 0.0115.9905.440 ± 0.0274.731 ± 0.0504.569 ± 0.0457
98 505K2V0.385 ± 0.0067.6706.680 ± 0.00828
102 422K0IV2.650 ± 0.0403.4102.510 ± 0.0271.201 ± 0.05129
108 870K5V1.881 ± 0.0174.6903.530 ± 0.02710
112 447F6V1.091 ± 0.0084.2003.590 ± 0.0272.851 ± 0.0802
113 368A4V2.230 ± 0.0201.1701.090 ± 0.0271.054 ± 0.0500.981 ± 0.05119
114 570F1V0.648 ± 0.0084.5304.160 ± 0.0273
114 622K3V1.106 ± 0.0075.5704.470 ± 0.0273.400 ± 0.0501
116 771F7V1.082 ± 0.0094.1303.520 ± 0.0272.731 ± 0.0802
120 005K7.0V0.856 ± 0.0167.7004.253 ± 0.0501
HIPSp. TypeθLD (mas)VICHKθLD Ref.
3765K2.5V0.868 ± 0.0045.7404.780 ± 0.0271
3821F9V1.623 ± 0.0043.4602.020 ± 0.0501.821 ± 0.0602
4151F9V0.865 ± 0.0104.8004.210 ± 0.0273.560 ± 0.0502
4436A6V0.708 ± 0.0133.8603.700 ± 0.0273.370 ± 0.0603.365 ± 0.0713
5336K1V Fe-20.972 ± 0.0095.1704.360 ± 0.0274
7513F9V1.143 ± 0.0104.1003.500 ± 0.0272.990 ± 0.0502.841 ± 0.0805, 6
7981K1V1.000 ± 0.0045.2404.360 ± 0.0273.345 ± 0.0507
8102G8.5V2.080 ± 0.0303.4902.630 ± 0.0271.727 ± 0.0501.631 ± 0.0608
12 114K3V1.030 ± 0.0075.7904.740 ± 0.0273.542 ± 0.0501
12 777F7V1.103 ± 0.0094.1003.530 ± 0.0273.070 ± 0.0502.761 ± 0.0902
16 537K2V (k)2.126 ± 0.0143.7201.749 ± 0.0501.601 ± 0.0609
16 852F9IV-V1.081 ± 0.0144.2903.640 ± 0.0272.871 ± 0.1002
19 849K0.5V1.446 ± 0.0224.4303.530 ± 0.0271, 10
22 449F6IV-V1.419 ± 0.0273.1902.650 ± 0.0272.148 ± 0.0502.031 ± 0.06011, 2
24 813G1V0.981 ± 0.0154.6904.040 ± 0.0273.330 ± 0.0503.255 ± 0.0452
27 435G2V0.572 ± 0.0095.9704.499 ± 0.0507
27 913G0V CH-0.31.051 ± 0.0094.3903.050 ± 0.0502.971 ± 0.0702
32 349A0mA1Va5.959 ± 0.059−1.440−1.430 ± 0.027−1.387 ± 0.05012, 13, 14, 15, 16
32 362F5IV-V1.401 ± 0.0093.3502.870 ± 0.0272.111 ± 0.0602
35 350A3V0.835 ± 0.0133.5803.450 ± 0.0272
36 366F1V0.853 ± 0.0144.1603.780 ± 0.0272
37 279F5IV-V5.434 ± 0.0500.400−0.140 ± 0.027−0.569 ± 0.050−0.669 ± 0.05113, 17, 18, 19
40 843F6V0.706 ± 0.0135.1303.940 ± 0.0507
43 587K0IV-V0.711 ± 0.0045.9604.140 ± 0.05020
45 343M0.0V0.871 ± 0.0157.6404.253 ± 0.0501
46 733F0V1.133 ± 0.0093.6503.270 ± 0.0272.711 ± 0.0902
46 853F7V1.632 ± 0.0053.1702.610 ± 0.0272.025 ± 0.0501.951 ± 0.0702
47 080G8IV0.821 ± 0.0135.4003.770 ± 0.0502
51 459F8V0.794 ± 0.0144.8204.240 ± 0.0272
53 910A1IVspSr1.149 ± 0.0142.3402.380 ± 0.0272.361 ± 0.0602
56 997G8V0.910 ± 0.0095.3104.580 ± 0.0272
57 757F8.5IV-V1.431 ± 0.0063.5903.000 ± 0.0272.345 ± 0.0502.301 ± 0.0602
57 939G8. V P0.686 ± 0.0066.4205.570 ± 0.0272, 21
64 394G0V1.127 ± 0.0114.2303.620 ± 0.0272.923 ± 0.0502.851 ± 0.1002
64 924G7V1.073 ± 0.0054.7403.990 ± 0.02722
65 721G5V1.010 ± 0.0204.9704.190 ± 0.0273.320 ± 0.0505
66 249A2Van0.852 ± 0.0093.3803.280 ± 0.0273.050 ± 0.0502
67 927G0IV2.252 ± 0.0362.6802.080 ± 0.0271.390 ± 0.0501.291 ± 0.05113, 18, 23, 24
71 284F4VkF2mF10.841 ± 0.0134.4704.020 ± 0.0273.516 ± 0.0502
72 567F9IV-V0.569 ± 0.0115.8604.530 ± 0.0507
72 659G7V1.196 ± 0.0144.5403.000 ± 0.0502.651 ± 0.0802
78 459G0V0.735 ± 0.0145.3903.945 ± 0.0503.901 ± 0.04522
81 300K0V (k)0.724 ± 0.0115.7703.910 ± 0.0501
91 262A1V3.280 ± 0.0100.0300.080 ± 0.0270.004 ± 0.050−0.079 ± 0.06013, 16, 25, 26, 27
92 043F5.5IV-V1.000 ± 0.0064.1903.660 ± 0.0272.941 ± 0.0902
93 747A1V0.895 ± 0.0172.9902.990 ± 0.0272.921 ± 0.0802
96 100G9V1.254 ± 0.0124.6703.850 ± 0.0272.811 ± 0.0804
96 441F3+ V0.844 ± 0.0094.4904.020 ± 0.0272, 6
96 895G1.5V0.554 ± 0.0115.9905.440 ± 0.0274.731 ± 0.0504.569 ± 0.0457
98 505K2V0.385 ± 0.0067.6706.680 ± 0.00828
102 422K0IV2.650 ± 0.0403.4102.510 ± 0.0271.201 ± 0.05129
108 870K5V1.881 ± 0.0174.6903.530 ± 0.02710
112 447F6V1.091 ± 0.0084.2003.590 ± 0.0272.851 ± 0.0802
113 368A4V2.230 ± 0.0201.1701.090 ± 0.0271.054 ± 0.0500.981 ± 0.05119
114 570F1V0.648 ± 0.0084.5304.160 ± 0.0273
114 622K3V1.106 ± 0.0075.5704.470 ± 0.0273.400 ± 0.0501
116 771F7V1.082 ± 0.0094.1303.520 ± 0.0272.731 ± 0.0802
120 005K7.0V0.856 ± 0.0167.7004.253 ± 0.0501

Angular Diameter References: (1) Boyajian et al. (2012b); (2) Boyajian et al. (2012a); (3) Maestro et al. (2013); (4) Boyajian et al. (2008); (5) Baines et al. (2008); (6) Ligi et al. (2012); (7) Boyajian et al. (2013); (8) Di Folco et al. (2004); (9) di Folco et al. (2007); (10) Demory et al. (2009); (11) van Belle, Creech-Eakman & Hart (2009); (12) Davis & Tango (1986); (13) Mozurkewich et al. (2003); (14) Kervella et al. (2003); (15) Davis et al. (2011); (16) Hanbury Brown et al. (1974); (17) Chiavassa et al. (2012); (18) Nordgren, Sudol & Mozurkewich (2001); (19) Kervella et al. (2004a); (20) von Braun et al. (2011); (21) Crepp et al. (2012); (22) von Braun et al. (2014); (23) van Leeuwen (2007); (24) Thévenin et al. (2005); (25) Ciardi et al. (2001); (26) Aufdenberg et al. (2006); (27) Monnier et al. (2012); (28) Boyajian et al. (2015); (29) Nordgren et al. (1999). Colour Magnitude References: Neugebauer & Leighton (1969); Gezari, Pitts & Schmitz (1999); Carpenter (2001); Kidger & Martín-Luis (2003); Kimeswenger et al. (2004); Koen et al. (2010) and Mallama (2014); see Section 2 for more details.

Table 1.

Selected stellar properties – dwarfs.

HIPSp. TypeθLD (mas)VICHKθLD Ref.
3765K2.5V0.868 ± 0.0045.7404.780 ± 0.0271
3821F9V1.623 ± 0.0043.4602.020 ± 0.0501.821 ± 0.0602
4151F9V0.865 ± 0.0104.8004.210 ± 0.0273.560 ± 0.0502
4436A6V0.708 ± 0.0133.8603.700 ± 0.0273.370 ± 0.0603.365 ± 0.0713
5336K1V Fe-20.972 ± 0.0095.1704.360 ± 0.0274
7513F9V1.143 ± 0.0104.1003.500 ± 0.0272.990 ± 0.0502.841 ± 0.0805, 6
7981K1V1.000 ± 0.0045.2404.360 ± 0.0273.345 ± 0.0507
8102G8.5V2.080 ± 0.0303.4902.630 ± 0.0271.727 ± 0.0501.631 ± 0.0608
12 114K3V1.030 ± 0.0075.7904.740 ± 0.0273.542 ± 0.0501
12 777F7V1.103 ± 0.0094.1003.530 ± 0.0273.070 ± 0.0502.761 ± 0.0902
16 537K2V (k)2.126 ± 0.0143.7201.749 ± 0.0501.601 ± 0.0609
16 852F9IV-V1.081 ± 0.0144.2903.640 ± 0.0272.871 ± 0.1002
19 849K0.5V1.446 ± 0.0224.4303.530 ± 0.0271, 10
22 449F6IV-V1.419 ± 0.0273.1902.650 ± 0.0272.148 ± 0.0502.031 ± 0.06011, 2
24 813G1V0.981 ± 0.0154.6904.040 ± 0.0273.330 ± 0.0503.255 ± 0.0452
27 435G2V0.572 ± 0.0095.9704.499 ± 0.0507
27 913G0V CH-0.31.051 ± 0.0094.3903.050 ± 0.0502.971 ± 0.0702
32 349A0mA1Va5.959 ± 0.059−1.440−1.430 ± 0.027−1.387 ± 0.05012, 13, 14, 15, 16
32 362F5IV-V1.401 ± 0.0093.3502.870 ± 0.0272.111 ± 0.0602
35 350A3V0.835 ± 0.0133.5803.450 ± 0.0272
36 366F1V0.853 ± 0.0144.1603.780 ± 0.0272
37 279F5IV-V5.434 ± 0.0500.400−0.140 ± 0.027−0.569 ± 0.050−0.669 ± 0.05113, 17, 18, 19
40 843F6V0.706 ± 0.0135.1303.940 ± 0.0507
43 587K0IV-V0.711 ± 0.0045.9604.140 ± 0.05020
45 343M0.0V0.871 ± 0.0157.6404.253 ± 0.0501
46 733F0V1.133 ± 0.0093.6503.270 ± 0.0272.711 ± 0.0902
46 853F7V1.632 ± 0.0053.1702.610 ± 0.0272.025 ± 0.0501.951 ± 0.0702
47 080G8IV0.821 ± 0.0135.4003.770 ± 0.0502
51 459F8V0.794 ± 0.0144.8204.240 ± 0.0272
53 910A1IVspSr1.149 ± 0.0142.3402.380 ± 0.0272.361 ± 0.0602
56 997G8V0.910 ± 0.0095.3104.580 ± 0.0272
57 757F8.5IV-V1.431 ± 0.0063.5903.000 ± 0.0272.345 ± 0.0502.301 ± 0.0602
57 939G8. V P0.686 ± 0.0066.4205.570 ± 0.0272, 21
64 394G0V1.127 ± 0.0114.2303.620 ± 0.0272.923 ± 0.0502.851 ± 0.1002
64 924G7V1.073 ± 0.0054.7403.990 ± 0.02722
65 721G5V1.010 ± 0.0204.9704.190 ± 0.0273.320 ± 0.0505
66 249A2Van0.852 ± 0.0093.3803.280 ± 0.0273.050 ± 0.0502
67 927G0IV2.252 ± 0.0362.6802.080 ± 0.0271.390 ± 0.0501.291 ± 0.05113, 18, 23, 24
71 284F4VkF2mF10.841 ± 0.0134.4704.020 ± 0.0273.516 ± 0.0502
72 567F9IV-V0.569 ± 0.0115.8604.530 ± 0.0507
72 659G7V1.196 ± 0.0144.5403.000 ± 0.0502.651 ± 0.0802
78 459G0V0.735 ± 0.0145.3903.945 ± 0.0503.901 ± 0.04522
81 300K0V (k)0.724 ± 0.0115.7703.910 ± 0.0501
91 262A1V3.280 ± 0.0100.0300.080 ± 0.0270.004 ± 0.050−0.079 ± 0.06013, 16, 25, 26, 27
92 043F5.5IV-V1.000 ± 0.0064.1903.660 ± 0.0272.941 ± 0.0902
93 747A1V0.895 ± 0.0172.9902.990 ± 0.0272.921 ± 0.0802
96 100G9V1.254 ± 0.0124.6703.850 ± 0.0272.811 ± 0.0804
96 441F3+ V0.844 ± 0.0094.4904.020 ± 0.0272, 6
96 895G1.5V0.554 ± 0.0115.9905.440 ± 0.0274.731 ± 0.0504.569 ± 0.0457
98 505K2V0.385 ± 0.0067.6706.680 ± 0.00828
102 422K0IV2.650 ± 0.0403.4102.510 ± 0.0271.201 ± 0.05129
108 870K5V1.881 ± 0.0174.6903.530 ± 0.02710
112 447F6V1.091 ± 0.0084.2003.590 ± 0.0272.851 ± 0.0802
113 368A4V2.230 ± 0.0201.1701.090 ± 0.0271.054 ± 0.0500.981 ± 0.05119
114 570F1V0.648 ± 0.0084.5304.160 ± 0.0273
114 622K3V1.106 ± 0.0075.5704.470 ± 0.0273.400 ± 0.0501
116 771F7V1.082 ± 0.0094.1303.520 ± 0.0272.731 ± 0.0802
120 005K7.0V0.856 ± 0.0167.7004.253 ± 0.0501
HIPSp. TypeθLD (mas)VICHKθLD Ref.
3765K2.5V0.868 ± 0.0045.7404.780 ± 0.0271
3821F9V1.623 ± 0.0043.4602.020 ± 0.0501.821 ± 0.0602
4151F9V0.865 ± 0.0104.8004.210 ± 0.0273.560 ± 0.0502
4436A6V0.708 ± 0.0133.8603.700 ± 0.0273.370 ± 0.0603.365 ± 0.0713
5336K1V Fe-20.972 ± 0.0095.1704.360 ± 0.0274
7513F9V1.143 ± 0.0104.1003.500 ± 0.0272.990 ± 0.0502.841 ± 0.0805, 6
7981K1V1.000 ± 0.0045.2404.360 ± 0.0273.345 ± 0.0507
8102G8.5V2.080 ± 0.0303.4902.630 ± 0.0271.727 ± 0.0501.631 ± 0.0608
12 114K3V1.030 ± 0.0075.7904.740 ± 0.0273.542 ± 0.0501
12 777F7V1.103 ± 0.0094.1003.530 ± 0.0273.070 ± 0.0502.761 ± 0.0902
16 537K2V (k)2.126 ± 0.0143.7201.749 ± 0.0501.601 ± 0.0609
16 852F9IV-V1.081 ± 0.0144.2903.640 ± 0.0272.871 ± 0.1002
19 849K0.5V1.446 ± 0.0224.4303.530 ± 0.0271, 10
22 449F6IV-V1.419 ± 0.0273.1902.650 ± 0.0272.148 ± 0.0502.031 ± 0.06011, 2
24 813G1V0.981 ± 0.0154.6904.040 ± 0.0273.330 ± 0.0503.255 ± 0.0452
27 435G2V0.572 ± 0.0095.9704.499 ± 0.0507
27 913G0V CH-0.31.051 ± 0.0094.3903.050 ± 0.0502.971 ± 0.0702
32 349A0mA1Va5.959 ± 0.059−1.440−1.430 ± 0.027−1.387 ± 0.05012, 13, 14, 15, 16
32 362F5IV-V1.401 ± 0.0093.3502.870 ± 0.0272.111 ± 0.0602
35 350A3V0.835 ± 0.0133.5803.450 ± 0.0272
36 366F1V0.853 ± 0.0144.1603.780 ± 0.0272
37 279F5IV-V5.434 ± 0.0500.400−0.140 ± 0.027−0.569 ± 0.050−0.669 ± 0.05113, 17, 18, 19
40 843F6V0.706 ± 0.0135.1303.940 ± 0.0507
43 587K0IV-V0.711 ± 0.0045.9604.140 ± 0.05020
45 343M0.0V0.871 ± 0.0157.6404.253 ± 0.0501
46 733F0V1.133 ± 0.0093.6503.270 ± 0.0272.711 ± 0.0902
46 853F7V1.632 ± 0.0053.1702.610 ± 0.0272.025 ± 0.0501.951 ± 0.0702
47 080G8IV0.821 ± 0.0135.4003.770 ± 0.0502
51 459F8V0.794 ± 0.0144.8204.240 ± 0.0272
53 910A1IVspSr1.149 ± 0.0142.3402.380 ± 0.0272.361 ± 0.0602
56 997G8V0.910 ± 0.0095.3104.580 ± 0.0272
57 757F8.5IV-V1.431 ± 0.0063.5903.000 ± 0.0272.345 ± 0.0502.301 ± 0.0602
57 939G8. V P0.686 ± 0.0066.4205.570 ± 0.0272, 21
64 394G0V1.127 ± 0.0114.2303.620 ± 0.0272.923 ± 0.0502.851 ± 0.1002
64 924G7V1.073 ± 0.0054.7403.990 ± 0.02722
65 721G5V1.010 ± 0.0204.9704.190 ± 0.0273.320 ± 0.0505
66 249A2Van0.852 ± 0.0093.3803.280 ± 0.0273.050 ± 0.0502
67 927G0IV2.252 ± 0.0362.6802.080 ± 0.0271.390 ± 0.0501.291 ± 0.05113, 18, 23, 24
71 284F4VkF2mF10.841 ± 0.0134.4704.020 ± 0.0273.516 ± 0.0502
72 567F9IV-V0.569 ± 0.0115.8604.530 ± 0.0507
72 659G7V1.196 ± 0.0144.5403.000 ± 0.0502.651 ± 0.0802
78 459G0V0.735 ± 0.0145.3903.945 ± 0.0503.901 ± 0.04522
81 300K0V (k)0.724 ± 0.0115.7703.910 ± 0.0501
91 262A1V3.280 ± 0.0100.0300.080 ± 0.0270.004 ± 0.050−0.079 ± 0.06013, 16, 25, 26, 27
92 043F5.5IV-V1.000 ± 0.0064.1903.660 ± 0.0272.941 ± 0.0902
93 747A1V0.895 ± 0.0172.9902.990 ± 0.0272.921 ± 0.0802
96 100G9V1.254 ± 0.0124.6703.850 ± 0.0272.811 ± 0.0804
96 441F3+ V0.844 ± 0.0094.4904.020 ± 0.0272, 6
96 895G1.5V0.554 ± 0.0115.9905.440 ± 0.0274.731 ± 0.0504.569 ± 0.0457
98 505K2V0.385 ± 0.0067.6706.680 ± 0.00828
102 422K0IV2.650 ± 0.0403.4102.510 ± 0.0271.201 ± 0.05129
108 870K5V1.881 ± 0.0174.6903.530 ± 0.02710
112 447F6V1.091 ± 0.0084.2003.590 ± 0.0272.851 ± 0.0802
113 368A4V2.230 ± 0.0201.1701.090 ± 0.0271.054 ± 0.0500.981 ± 0.05119
114 570F1V0.648 ± 0.0084.5304.160 ± 0.0273
114 622K3V1.106 ± 0.0075.5704.470 ± 0.0273.400 ± 0.0501
116 771F7V1.082 ± 0.0094.1303.520 ± 0.0272.731 ± 0.0802
120 005K7.0V0.856 ± 0.0167.7004.253 ± 0.0501

Angular Diameter References: (1) Boyajian et al. (2012b); (2) Boyajian et al. (2012a); (3) Maestro et al. (2013); (4) Boyajian et al. (2008); (5) Baines et al. (2008); (6) Ligi et al. (2012); (7) Boyajian et al. (2013); (8) Di Folco et al. (2004); (9) di Folco et al. (2007); (10) Demory et al. (2009); (11) van Belle, Creech-Eakman & Hart (2009); (12) Davis & Tango (1986); (13) Mozurkewich et al. (2003); (14) Kervella et al. (2003); (15) Davis et al. (2011); (16) Hanbury Brown et al. (1974); (17) Chiavassa et al. (2012); (18) Nordgren, Sudol & Mozurkewich (2001); (19) Kervella et al. (2004a); (20) von Braun et al. (2011); (21) Crepp et al. (2012); (22) von Braun et al. (2014); (23) van Leeuwen (2007); (24) Thévenin et al. (2005); (25) Ciardi et al. (2001); (26) Aufdenberg et al. (2006); (27) Monnier et al. (2012); (28) Boyajian et al. (2015); (29) Nordgren et al. (1999). Colour Magnitude References: Neugebauer & Leighton (1969); Gezari, Pitts & Schmitz (1999); Carpenter (2001); Kidger & Martín-Luis (2003); Kimeswenger et al. (2004); Koen et al. (2010) and Mallama (2014); see Section 2 for more details.

Table 2.

Selected stellar properties – giants.

HIPSp. TypeθLD (mas)VICHKθLD Ref.
3092K3III4.168 ± 0.0473.2702.040 ± 0.0270.551 ± 0.0500.421 ± 0.0511, 2
7607K3- III CN0.53.760 ± 0.0703.5902.310 ± 0.0270.771 ± 0.0413
7884K2/3 III2.810 ± 0.0304.4503.050 ± 0.0271.409 ± 0.0501.241 ± 0.0313
9884K1IIIb6.847 ± 0.0712.0100.860 ± 0.027−0.558 ± 0.050−0.649 ± 0.0511, 2, 3, 4
13 328K5.5III4.060 ± 0.0404.5602.820 ± 0.0270.721 ± 0.0511
20 205G9.5IIIab CN0.52.520 ± 0.0303.6501.500 ± 0.0501.481 ± 0.0415
20 455G9.5III CN0.52.302 ± 0.0403.7701.581 ± 0.0511, 2, 5
20 885G9III Fe-0.52.310 ± 0.0403.8401.621 ± 0.0605
20 889G9.5III CN0.52.572 ± 0.0463.5301.291 ± 0.0511, 2, 5, 6
21 421K5III20.297 ± 0.3840.870−2.653 ± 0.0501, 4, 7, 8
22 453K3+ III2.727 ± 0.0134.8901.441 ± 0.0419
37 826G9III8.177 ± 0.1301.1600.160 ± 0.027−1.003 ± 0.050−1.139 ± 0.0511, 10, 11, 2, 4
42 527K1+ III2.225 ± 0.0204.5903.420 ± 0.0271.941 ± 0.0091.901 ± 0.07012
45 860K6III8.025 ± 0.1423.1401.460 ± 0.027−0.475 ± 0.050−0.699 ± 0.0311, 11, 13, 2
46 390K3IIIa9.700 ± 0.1001.9900.550 ± 0.027−1.074 ± 0.050−1.379 ± 0.0601
49 637K3.5IIIb Fe-1:3.330 ± 0.0404.3902.890 ± 0.0271.190 ± 0.0501.011 ± 0.0703
53 229K0+ III-IV2.540 ± 0.0303.7902.770 ± 0.0271.351 ± 0.0413
54 539K1III4.107 ± 0.0533.0001.920 ± 0.0270.539 ± 0.0100.371 ± 0.0411, 2
55 219K0IV4.745 ± 0.0603.4902.110 ± 0.0270.415 ± 0.0100.251 ± 0.0411, 2
56 343G7III2.386 ± 0.0213.5402.620 ± 0.0271.577 ± 0.0501.491 ± 0.06014
57 399K0.5IIIb:3.230 ± 0.0203.6902.580 ± 0.0271.020 ± 0.0500.901 ± 0.0313
57 477K2.5IIIb CN11.606 ± 0.0065.2702.531 ± 0.06012
59 746K2III1.498 ± 0.0285.7202.921 ± 0.08012
60 202K0III1.651 ± 0.0164.7203.720 ± 0.0272.321 ± 0.05115
63 608G8III3.254 ± 0.0372.8501.970 ± 0.0270.770 ± 0.0500.731 ± 0.0511, 2, 3
67 459K5.5III4.720 ± 0.0504.0502.440 ± 0.0270.391 ± 0.0413
68 594G8:III: Fe-50.948 ± 0.0126.1803.775 ± 0.0503.666 ± 0.01516
69 673K0III CH-1 CN-0.520.877 ± 0.277−0.050−1.330 ± 0.027−2.951 ± 0.0501, 11, 17, 18, 19
72 607K4- III10.300 ± 0.1002.0700.590 ± 0.027−1.259 ± 0.0701
74 666G8IV2.744 ± 0.0363.4602.480 ± 0.0271.260 ± 0.0501.121 ± 0.0311, 2, 3, 6
74 793K4III2.336 ± 0.0205.0201.901 ± 0.05112
75 260K4III1.690 ± 0.0315.7202.721 ± 0.06012
75 458K2III3.596 ± 0.0153.2902.200 ± 0.0270.701 ± 0.04120
77 070K2III4.828 ± 0.0622.6301.560 ± 0.0270.197 ± 0.0070.041 ± 0.0511, 2
79 882G9.5IIIb Fe-0.52.961 ± 0.0073.2302.290 ± 0.0270.961 ± 0.05121
80 331G8III-IV3.633 ± 0.0662.7301.890 ± 0.0270.601 ± 0.0311, 2
80 816G7IIIa Fe-0.53.492 ± 0.0502.7801.880 ± 0.0270.690 ± 0.0500.621 ± 0.0411, 2
81 833G7III Fe-12.529 ± 0.0503.4802.580 ± 0.0271.281 ± 0.0311, 2, 3
82 611K2III1.440 ± 0.0045.9902.811 ± 0.09012
86 182K1III1.515 ± 0.0105.3502.651 ± 0.07012
87 833K5III9.978 ± 0.1802.2400.630 ± 0.027−1.160 ± 0.050−1.319 ± 0.0411, 11, 13, 17
90 344K1.5III Fe-12.120 ± 0.0204.8203.630 ± 0.0271.931 ± 0.05122
93 194A1III0.753 ± 0.0093.2503.260 ± 0.0273.195 ± 0.05023
94 376G9III3.268 ± 0.0543.0702.120 ± 0.0270.741 ± 0.0511, 2
96 837K0III1.765 ± 0.0124.3903.410 ± 0.0272.210 ± 0.0502.071 ± 0.0609
97 938G9.5IIIb1.726 ± 0.0084.7103.630 ± 0.0272.351 ± 0.09024
98 337M0- III6.821 ± 0.0983.5101.790 ± 0.027−0.042 ± 0.050−0.309 ± 0.0411, 13, 25
99 663K5III1.859 ± 0.0035.8102.311 ± 0.07012
102 488K0III-IV4.610 ± 0.0502.4801.450 ± 0.0270.206 ± 0.0500.101 ± 0.0701
104 732G8+ IIIa Ba0.52.820 ± 0.0303.2102.270 ± 0.0271.155 ± 0.0501.051 ± 0.0311
110 538G9IIIb Ca11.920 ± 0.0204.4203.400 ± 0.0272.217 ± 0.0501.961 ± 0.0513
111 944K2.5III2.731 ± 0.0244.5003.190 ± 0.0271.600 ± 0.0071.391 ± 0.07012
HIPSp. TypeθLD (mas)VICHKθLD Ref.
3092K3III4.168 ± 0.0473.2702.040 ± 0.0270.551 ± 0.0500.421 ± 0.0511, 2
7607K3- III CN0.53.760 ± 0.0703.5902.310 ± 0.0270.771 ± 0.0413
7884K2/3 III2.810 ± 0.0304.4503.050 ± 0.0271.409 ± 0.0501.241 ± 0.0313
9884K1IIIb6.847 ± 0.0712.0100.860 ± 0.027−0.558 ± 0.050−0.649 ± 0.0511, 2, 3, 4
13 328K5.5III4.060 ± 0.0404.5602.820 ± 0.0270.721 ± 0.0511
20 205G9.5IIIab CN0.52.520 ± 0.0303.6501.500 ± 0.0501.481 ± 0.0415
20 455G9.5III CN0.52.302 ± 0.0403.7701.581 ± 0.0511, 2, 5
20 885G9III Fe-0.52.310 ± 0.0403.8401.621 ± 0.0605
20 889G9.5III CN0.52.572 ± 0.0463.5301.291 ± 0.0511, 2, 5, 6
21 421K5III20.297 ± 0.3840.870−2.653 ± 0.0501, 4, 7, 8
22 453K3+ III2.727 ± 0.0134.8901.441 ± 0.0419
37 826G9III8.177 ± 0.1301.1600.160 ± 0.027−1.003 ± 0.050−1.139 ± 0.0511, 10, 11, 2, 4
42 527K1+ III2.225 ± 0.0204.5903.420 ± 0.0271.941 ± 0.0091.901 ± 0.07012
45 860K6III8.025 ± 0.1423.1401.460 ± 0.027−0.475 ± 0.050−0.699 ± 0.0311, 11, 13, 2
46 390K3IIIa9.700 ± 0.1001.9900.550 ± 0.027−1.074 ± 0.050−1.379 ± 0.0601
49 637K3.5IIIb Fe-1:3.330 ± 0.0404.3902.890 ± 0.0271.190 ± 0.0501.011 ± 0.0703
53 229K0+ III-IV2.540 ± 0.0303.7902.770 ± 0.0271.351 ± 0.0413
54 539K1III4.107 ± 0.0533.0001.920 ± 0.0270.539 ± 0.0100.371 ± 0.0411, 2
55 219K0IV4.745 ± 0.0603.4902.110 ± 0.0270.415 ± 0.0100.251 ± 0.0411, 2
56 343G7III2.386 ± 0.0213.5402.620 ± 0.0271.577 ± 0.0501.491 ± 0.06014
57 399K0.5IIIb:3.230 ± 0.0203.6902.580 ± 0.0271.020 ± 0.0500.901 ± 0.0313
57 477K2.5IIIb CN11.606 ± 0.0065.2702.531 ± 0.06012
59 746K2III1.498 ± 0.0285.7202.921 ± 0.08012
60 202K0III1.651 ± 0.0164.7203.720 ± 0.0272.321 ± 0.05115
63 608G8III3.254 ± 0.0372.8501.970 ± 0.0270.770 ± 0.0500.731 ± 0.0511, 2, 3
67 459K5.5III4.720 ± 0.0504.0502.440 ± 0.0270.391 ± 0.0413
68 594G8:III: Fe-50.948 ± 0.0126.1803.775 ± 0.0503.666 ± 0.01516
69 673K0III CH-1 CN-0.520.877 ± 0.277−0.050−1.330 ± 0.027−2.951 ± 0.0501, 11, 17, 18, 19
72 607K4- III10.300 ± 0.1002.0700.590 ± 0.027−1.259 ± 0.0701
74 666G8IV2.744 ± 0.0363.4602.480 ± 0.0271.260 ± 0.0501.121 ± 0.0311, 2, 3, 6
74 793K4III2.336 ± 0.0205.0201.901 ± 0.05112
75 260K4III1.690 ± 0.0315.7202.721 ± 0.06012
75 458K2III3.596 ± 0.0153.2902.200 ± 0.0270.701 ± 0.04120
77 070K2III4.828 ± 0.0622.6301.560 ± 0.0270.197 ± 0.0070.041 ± 0.0511, 2
79 882G9.5IIIb Fe-0.52.961 ± 0.0073.2302.290 ± 0.0270.961 ± 0.05121
80 331G8III-IV3.633 ± 0.0662.7301.890 ± 0.0270.601 ± 0.0311, 2
80 816G7IIIa Fe-0.53.492 ± 0.0502.7801.880 ± 0.0270.690 ± 0.0500.621 ± 0.0411, 2
81 833G7III Fe-12.529 ± 0.0503.4802.580 ± 0.0271.281 ± 0.0311, 2, 3
82 611K2III1.440 ± 0.0045.9902.811 ± 0.09012
86 182K1III1.515 ± 0.0105.3502.651 ± 0.07012
87 833K5III9.978 ± 0.1802.2400.630 ± 0.027−1.160 ± 0.050−1.319 ± 0.0411, 11, 13, 17
90 344K1.5III Fe-12.120 ± 0.0204.8203.630 ± 0.0271.931 ± 0.05122
93 194A1III0.753 ± 0.0093.2503.260 ± 0.0273.195 ± 0.05023
94 376G9III3.268 ± 0.0543.0702.120 ± 0.0270.741 ± 0.0511, 2
96 837K0III1.765 ± 0.0124.3903.410 ± 0.0272.210 ± 0.0502.071 ± 0.0609
97 938G9.5IIIb1.726 ± 0.0084.7103.630 ± 0.0272.351 ± 0.09024
98 337M0- III6.821 ± 0.0983.5101.790 ± 0.027−0.042 ± 0.050−0.309 ± 0.0411, 13, 25
99 663K5III1.859 ± 0.0035.8102.311 ± 0.07012
102 488K0III-IV4.610 ± 0.0502.4801.450 ± 0.0270.206 ± 0.0500.101 ± 0.0701
104 732G8+ IIIa Ba0.52.820 ± 0.0303.2102.270 ± 0.0271.155 ± 0.0501.051 ± 0.0311
110 538G9IIIb Ca11.920 ± 0.0204.4203.400 ± 0.0272.217 ± 0.0501.961 ± 0.0513
111 944K2.5III2.731 ± 0.0244.5003.190 ± 0.0271.600 ± 0.0071.391 ± 0.07012

Angular Diameter References: (1) Mozurkewich et al. (2003); (2) Nordgren et al. (2001); (3) Nordgren et al. (1999); (4) Mozurkewich et al. (1991); (5) Boyajian (2009); (6) van Belle (1999); (7) Richichi & Roccatagliata (2005); (8) White & Feierman (1987); (9) van Belle et al. (2009); (10) Shao et al. (1988); (11) di Benedetto (1993); (12) Baines et al. (2010); (13) Hutter et al. (1989); (14) Thévenin et al. (2005); (15) von Braun et al. (2014); (16) Crepp et al. (2012); (17) Dyck et al. (1996); (18) Quirrenbach et al. (1996); (19) di Benedetto & Foy (1986); (20) Baines et al. (2011); (21) Mazumdar et al. (2009); (22) Ligi et al. (2012); (23) Maestro et al. (2013); (24) Baines et al. (2009); (25) Wittkowski et al. (2001). Colour Magnitude References: Neugebauer & Leighton (1969); Gezari et al. (1999); Carpenter (2001); Kidger & Martín-Luis (2003); Kimeswenger et al. (2004); Koen et al. (2010) and Mallama (2014); see Section 2 for more details.

Table 2.

Selected stellar properties – giants.

HIPSp. TypeθLD (mas)VICHKθLD Ref.
3092K3III4.168 ± 0.0473.2702.040 ± 0.0270.551 ± 0.0500.421 ± 0.0511, 2
7607K3- III CN0.53.760 ± 0.0703.5902.310 ± 0.0270.771 ± 0.0413
7884K2/3 III2.810 ± 0.0304.4503.050 ± 0.0271.409 ± 0.0501.241 ± 0.0313
9884K1IIIb6.847 ± 0.0712.0100.860 ± 0.027−0.558 ± 0.050−0.649 ± 0.0511, 2, 3, 4
13 328K5.5III4.060 ± 0.0404.5602.820 ± 0.0270.721 ± 0.0511
20 205G9.5IIIab CN0.52.520 ± 0.0303.6501.500 ± 0.0501.481 ± 0.0415
20 455G9.5III CN0.52.302 ± 0.0403.7701.581 ± 0.0511, 2, 5
20 885G9III Fe-0.52.310 ± 0.0403.8401.621 ± 0.0605
20 889G9.5III CN0.52.572 ± 0.0463.5301.291 ± 0.0511, 2, 5, 6
21 421K5III20.297 ± 0.3840.870−2.653 ± 0.0501, 4, 7, 8
22 453K3+ III2.727 ± 0.0134.8901.441 ± 0.0419
37 826G9III8.177 ± 0.1301.1600.160 ± 0.027−1.003 ± 0.050−1.139 ± 0.0511, 10, 11, 2, 4
42 527K1+ III2.225 ± 0.0204.5903.420 ± 0.0271.941 ± 0.0091.901 ± 0.07012
45 860K6III8.025 ± 0.1423.1401.460 ± 0.027−0.475 ± 0.050−0.699 ± 0.0311, 11, 13, 2
46 390K3IIIa9.700 ± 0.1001.9900.550 ± 0.027−1.074 ± 0.050−1.379 ± 0.0601
49 637K3.5IIIb Fe-1:3.330 ± 0.0404.3902.890 ± 0.0271.190 ± 0.0501.011 ± 0.0703
53 229K0+ III-IV2.540 ± 0.0303.7902.770 ± 0.0271.351 ± 0.0413
54 539K1III4.107 ± 0.0533.0001.920 ± 0.0270.539 ± 0.0100.371 ± 0.0411, 2
55 219K0IV4.745 ± 0.0603.4902.110 ± 0.0270.415 ± 0.0100.251 ± 0.0411, 2
56 343G7III2.386 ± 0.0213.5402.620 ± 0.0271.577 ± 0.0501.491 ± 0.06014
57 399K0.5IIIb:3.230 ± 0.0203.6902.580 ± 0.0271.020 ± 0.0500.901 ± 0.0313
57 477K2.5IIIb CN11.606 ± 0.0065.2702.531 ± 0.06012
59 746K2III1.498 ± 0.0285.7202.921 ± 0.08012
60 202K0III1.651 ± 0.0164.7203.720 ± 0.0272.321 ± 0.05115
63 608G8III3.254 ± 0.0372.8501.970 ± 0.0270.770 ± 0.0500.731 ± 0.0511, 2, 3
67 459K5.5III4.720 ± 0.0504.0502.440 ± 0.0270.391 ± 0.0413
68 594G8:III: Fe-50.948 ± 0.0126.1803.775 ± 0.0503.666 ± 0.01516
69 673K0III CH-1 CN-0.520.877 ± 0.277−0.050−1.330 ± 0.027−2.951 ± 0.0501, 11, 17, 18, 19
72 607K4- III10.300 ± 0.1002.0700.590 ± 0.027−1.259 ± 0.0701
74 666G8IV2.744 ± 0.0363.4602.480 ± 0.0271.260 ± 0.0501.121 ± 0.0311, 2, 3, 6
74 793K4III2.336 ± 0.0205.0201.901 ± 0.05112
75 260K4III1.690 ± 0.0315.7202.721 ± 0.06012
75 458K2III3.596 ± 0.0153.2902.200 ± 0.0270.701 ± 0.04120
77 070K2III4.828 ± 0.0622.6301.560 ± 0.0270.197 ± 0.0070.041 ± 0.0511, 2
79 882G9.5IIIb Fe-0.52.961 ± 0.0073.2302.290 ± 0.0270.961 ± 0.05121
80 331G8III-IV3.633 ± 0.0662.7301.890 ± 0.0270.601 ± 0.0311, 2
80 816G7IIIa Fe-0.53.492 ± 0.0502.7801.880 ± 0.0270.690 ± 0.0500.621 ± 0.0411, 2
81 833G7III Fe-12.529 ± 0.0503.4802.580 ± 0.0271.281 ± 0.0311, 2, 3
82 611K2III1.440 ± 0.0045.9902.811 ± 0.09012
86 182K1III1.515 ± 0.0105.3502.651 ± 0.07012
87 833K5III9.978 ± 0.1802.2400.630 ± 0.027−1.160 ± 0.050−1.319 ± 0.0411, 11, 13, 17
90 344K1.5III Fe-12.120 ± 0.0204.8203.630 ± 0.0271.931 ± 0.05122
93 194A1III0.753 ± 0.0093.2503.260 ± 0.0273.195 ± 0.05023
94 376G9III3.268 ± 0.0543.0702.120 ± 0.0270.741 ± 0.0511, 2
96 837K0III1.765 ± 0.0124.3903.410 ± 0.0272.210 ± 0.0502.071 ± 0.0609
97 938G9.5IIIb1.726 ± 0.0084.7103.630 ± 0.0272.351 ± 0.09024
98 337M0- III6.821 ± 0.0983.5101.790 ± 0.027−0.042 ± 0.050−0.309 ± 0.0411, 13, 25
99 663K5III1.859 ± 0.0035.8102.311 ± 0.07012
102 488K0III-IV4.610 ± 0.0502.4801.450 ± 0.0270.206 ± 0.0500.101 ± 0.0701
104 732G8+ IIIa Ba0.52.820 ± 0.0303.2102.270 ± 0.0271.155 ± 0.0501.051 ± 0.0311
110 538G9IIIb Ca11.920 ± 0.0204.4203.400 ± 0.0272.217 ± 0.0501.961 ± 0.0513
111 944K2.5III2.731 ± 0.0244.5003.190 ± 0.0271.600 ± 0.0071.391 ± 0.07012
HIPSp. TypeθLD (mas)VICHKθLD Ref.
3092K3III4.168 ± 0.0473.2702.040 ± 0.0270.551 ± 0.0500.421 ± 0.0511, 2
7607K3- III CN0.53.760 ± 0.0703.5902.310 ± 0.0270.771 ± 0.0413
7884K2/3 III2.810 ± 0.0304.4503.050 ± 0.0271.409 ± 0.0501.241 ± 0.0313
9884K1IIIb6.847 ± 0.0712.0100.860 ± 0.027−0.558 ± 0.050−0.649 ± 0.0511, 2, 3, 4
13 328K5.5III4.060 ± 0.0404.5602.820 ± 0.0270.721 ± 0.0511
20 205G9.5IIIab CN0.52.520 ± 0.0303.6501.500 ± 0.0501.481 ± 0.0415
20 455G9.5III CN0.52.302 ± 0.0403.7701.581 ± 0.0511, 2, 5
20 885G9III Fe-0.52.310 ± 0.0403.8401.621 ± 0.0605
20 889G9.5III CN0.52.572 ± 0.0463.5301.291 ± 0.0511, 2, 5, 6
21 421K5III20.297 ± 0.3840.870−2.653 ± 0.0501, 4, 7, 8
22 453K3+ III2.727 ± 0.0134.8901.441 ± 0.0419
37 826G9III8.177 ± 0.1301.1600.160 ± 0.027−1.003 ± 0.050−1.139 ± 0.0511, 10, 11, 2, 4
42 527K1+ III2.225 ± 0.0204.5903.420 ± 0.0271.941 ± 0.0091.901 ± 0.07012
45 860K6III8.025 ± 0.1423.1401.460 ± 0.027−0.475 ± 0.050−0.699 ± 0.0311, 11, 13, 2
46 390K3IIIa9.700 ± 0.1001.9900.550 ± 0.027−1.074 ± 0.050−1.379 ± 0.0601
49 637K3.5IIIb Fe-1:3.330 ± 0.0404.3902.890 ± 0.0271.190 ± 0.0501.011 ± 0.0703
53 229K0+ III-IV2.540 ± 0.0303.7902.770 ± 0.0271.351 ± 0.0413
54 539K1III4.107 ± 0.0533.0001.920 ± 0.0270.539 ± 0.0100.371 ± 0.0411, 2
55 219K0IV4.745 ± 0.0603.4902.110 ± 0.0270.415 ± 0.0100.251 ± 0.0411, 2
56 343G7III2.386 ± 0.0213.5402.620 ± 0.0271.577 ± 0.0501.491 ± 0.06014
57 399K0.5IIIb:3.230 ± 0.0203.6902.580 ± 0.0271.020 ± 0.0500.901 ± 0.0313
57 477K2.5IIIb CN11.606 ± 0.0065.2702.531 ± 0.06012
59 746K2III1.498 ± 0.0285.7202.921 ± 0.08012
60 202K0III1.651 ± 0.0164.7203.720 ± 0.0272.321 ± 0.05115
63 608G8III3.254 ± 0.0372.8501.970 ± 0.0270.770 ± 0.0500.731 ± 0.0511, 2, 3
67 459K5.5III4.720 ± 0.0504.0502.440 ± 0.0270.391 ± 0.0413
68 594G8:III: Fe-50.948 ± 0.0126.1803.775 ± 0.0503.666 ± 0.01516
69 673K0III CH-1 CN-0.520.877 ± 0.277−0.050−1.330 ± 0.027−2.951 ± 0.0501, 11, 17, 18, 19
72 607K4- III10.300 ± 0.1002.0700.590 ± 0.027−1.259 ± 0.0701
74 666G8IV2.744 ± 0.0363.4602.480 ± 0.0271.260 ± 0.0501.121 ± 0.0311, 2, 3, 6
74 793K4III2.336 ± 0.0205.0201.901 ± 0.05112
75 260K4III1.690 ± 0.0315.7202.721 ± 0.06012
75 458K2III3.596 ± 0.0153.2902.200 ± 0.0270.701 ± 0.04120
77 070K2III4.828 ± 0.0622.6301.560 ± 0.0270.197 ± 0.0070.041 ± 0.0511, 2
79 882G9.5IIIb Fe-0.52.961 ± 0.0073.2302.290 ± 0.0270.961 ± 0.05121
80 331G8III-IV3.633 ± 0.0662.7301.890 ± 0.0270.601 ± 0.0311, 2
80 816G7IIIa Fe-0.53.492 ± 0.0502.7801.880 ± 0.0270.690 ± 0.0500.621 ± 0.0411, 2
81 833G7III Fe-12.529 ± 0.0503.4802.580 ± 0.0271.281 ± 0.0311, 2, 3
82 611K2III1.440 ± 0.0045.9902.811 ± 0.09012
86 182K1III1.515 ± 0.0105.3502.651 ± 0.07012
87 833K5III9.978 ± 0.1802.2400.630 ± 0.027−1.160 ± 0.050−1.319 ± 0.0411, 11, 13, 17
90 344K1.5III Fe-12.120 ± 0.0204.8203.630 ± 0.0271.931 ± 0.05122
93 194A1III0.753 ± 0.0093.2503.260 ± 0.0273.195 ± 0.05023
94 376G9III3.268 ± 0.0543.0702.120 ± 0.0270.741 ± 0.0511, 2
96 837K0III1.765 ± 0.0124.3903.410 ± 0.0272.210 ± 0.0502.071 ± 0.0609
97 938G9.5IIIb1.726 ± 0.0084.7103.630 ± 0.0272.351 ± 0.09024
98 337M0- III6.821 ± 0.0983.5101.790 ± 0.027−0.042 ± 0.050−0.309 ± 0.0411, 13, 25
99 663K5III1.859 ± 0.0035.8102.311 ± 0.07012
102 488K0III-IV4.610 ± 0.0502.4801.450 ± 0.0270.206 ± 0.0500.101 ± 0.0701
104 732G8+ IIIa Ba0.52.820 ± 0.0303.2102.270 ± 0.0271.155 ± 0.0501.051 ± 0.0311
110 538G9IIIb Ca11.920 ± 0.0204.4203.400 ± 0.0272.217 ± 0.0501.961 ± 0.0513
111 944K2.5III2.731 ± 0.0244.5003.190 ± 0.0271.600 ± 0.0071.391 ± 0.07012

Angular Diameter References: (1) Mozurkewich et al. (2003); (2) Nordgren et al. (2001); (3) Nordgren et al. (1999); (4) Mozurkewich et al. (1991); (5) Boyajian (2009); (6) van Belle (1999); (7) Richichi & Roccatagliata (2005); (8) White & Feierman (1987); (9) van Belle et al. (2009); (10) Shao et al. (1988); (11) di Benedetto (1993); (12) Baines et al. (2010); (13) Hutter et al. (1989); (14) Thévenin et al. (2005); (15) von Braun et al. (2014); (16) Crepp et al. (2012); (17) Dyck et al. (1996); (18) Quirrenbach et al. (1996); (19) di Benedetto & Foy (1986); (20) Baines et al. (2011); (21) Mazumdar et al. (2009); (22) Ligi et al. (2012); (23) Maestro et al. (2013); (24) Baines et al. (2009); (25) Wittkowski et al. (2001). Colour Magnitude References: Neugebauer & Leighton (1969); Gezari et al. (1999); Carpenter (2001); Kidger & Martín-Luis (2003); Kimeswenger et al. (2004); Koen et al. (2010) and Mallama (2014); see Section 2 for more details.

2.1 Stellar classification

We restrict included stars to an effective temperature range of 3900 < T < 10 500 K, which approximately captures spectral types A–K.

Evolved stars are selected not based on their listed spectral classes, but by a stellar radius cut of 6 < R/R < 100. This is done in an attempt to disambiguate the luminosity classes of stars which might have inconsistent classifications in the boundary between subgiants and giants.

Some stars in our sample are known to be in multiple star systems. The presence of additional stars can introduce an offset in flux and visibility of the target star. We adopt the selection precedent from Boyajian et al. (2008); we exclude any binary systems where a secondary star is both separated from the target by at most 5 arcsec and is within 3 mag of the target in any bands used in the analysis.

2.2 Angular diameters

All stars are required to have limb-darkened angular diameters with mean random errors ≤2 per cent, and must have been observed on at least two separate occasions. The measurements come from a variety of sources, which are detailed in Boyajian et al. (2012b) and Boyajian et al. (2013) and listed for reference in Tables 1 and 2. Stars with inconsistent diameters (here defined as any two sources differing by at least three times the maximum uncertainty of any measurement) were excluded. We take the uncertainty-weighted means of the remaining measurements for our quoted angular diameters. Angular diameter source instruments include the Palomar Testbed Interferometer, the Very Large Telescope Interferometer, the Sydney University Stellar Interferometer, the Narrabri Stellar Intensity Interferometer, the Mark III interferometer, the Navy Prototype Optical Interferometer and especially the CHARA Array.

2.3 Magnitudes

2MASS photometry (Cutri et al. 2003) is saturated for most of the stars in our sample due to brightness. Therefore, we rely on earlier photometric catalogues for reliable magnitudes. All magnitudes used are listed in Tables 1 and 2. For the I magnitudes, we use Cousins IC photometry converted from Johnson IJ sources (Mallama 2014), as well as magnitudes from Koen et al. (2010) for our reddest stars. We use Gezari et al. (1999) for H magnitudes, querying the catalogue for all magnitude measurements centred at 1.65 μm. Here, errors of 0.05 mag are assumed as a conservative estimate. The K magnitudes are taken from a combination of Neugebauer & Leighton (1969), Kidger & Martín-Luis (2003) and Kimeswenger et al. (2004). Since the filter profiles for the magnitudes in these catalogues differ appreciably, we choose to convert all into the 2MASS system. Neugebauer & Leighton (1969) magnitudes are originally in the California Institute of Technology (CIT) system (Iyengar et al. 1982), and the Kimeswenger et al. (2004) are listed as Deep Near-Infrared Survey (of the Southern sky) (DENIS) KS magnitudes. Carpenter (2001) provides transformations from both the CIT and DENIS systems into the 2MASS system (with updated transformations available on the 2MASS website). For the Kidger & Martín-Luis (2003) magnitudes, we first transform into an intermediate system, the Koornneef system (Koornneef 1983). Kidger & Martín-Luis (2003) compare their photometry to the system described in (Koornneef 1983) and find a constant offset in magnitude. From this, we convert to 2MASS via the relation in Carpenter (2001). While significant colour dependence exists for the DENIS and Koornneef transformations, the CIT transformation exhibits only a very weak colour dependence. In light of this, and the lack of accompanying J magnitudes for the Neugebauer & Leighton (1969) K magnitudes, we choose to neglect the colour term, incorporating the error from this omission into our final uncertainty propagation.

In order to calculate colour indices, all stars must have at least one available magnitude in any of the IC, H and K bands. We exclude stars with inconsistent magnitudes, i.e. magnitudes from different sources whose values disagree by at least triple the largest uncertainty of any one value. The listed uncertainties in the resulting colours are propagated from both the uncertainties from conversion as well as assumed 0.02 mag errors in the original Johnson V magnitudes (Mallama 2014).

3 FITTING PROCEDURE

We choose to construct relations for V − IC, V − H, V − K, IC − H and IC − K (Fig. 1). We start with a constant-only fit of log θQ=0 and add polynomial terms in colour, following the form of equation (3). The fitting procedure uses a Levenberg–Markquardt least-squares algorithm provided by the MINPACK-1 Least Squares Fitting routine (Markwardt 2009). For each solution, we perform an F-test (Press et al. 1992) to determine whether the improvement to the relation by adding a polynomial term is statistically significant. Once the functional form is obtained, we run a Monte Carlo simulation by generating 104 simulated data sets, randomly choosing colours and diameters drawn from Gaussian probability distributions of each star's true colour and diameter. The means and standard deviations are given by the initial fit coefficients and their associated uncertainties, respectively. This allows us to incorporate all measurement uncertainties into the relation.

Top panels: Angular diameter–colour relations for both dwarf/subgiants (blue line) and giants (red line), as well as a combined fit (black line). The functional form of the fits is described in equation (3) with coefficients listed in Table 3. The data are introduced in Section 2 and catalogued in Tables 1 and 2. The fitting methodology is described in Section 4. All panels show previous relations from Boyajian et al. (2014). For V − IC, we include the result for dwarfs from Kervella & Fouqué (2008), and for V − K we include the result for dwarfs from Kervella et al. (2004b). Bottom panels: The residuals in dex are shown with respect to the combined relation.
Figure 1.

Top panels: Angular diameter–colour relations for both dwarf/subgiants (blue line) and giants (red line), as well as a combined fit (black line). The functional form of the fits is described in equation (3) with coefficients listed in Table 3. The data are introduced in Section 2 and catalogued in Tables 1 and 2. The fitting methodology is described in Section 4. All panels show previous relations from Boyajian et al. (2014). For V − IC, we include the result for dwarfs from Kervella & Fouqué (2008), and for V − K we include the result for dwarfs from Kervella et al. (2004b). Bottom panels: The residuals in dex are shown with respect to the combined relation.

4 ANALYSIS

For each colour, we construct independent fits of unevolved and evolved stars (Fig. 1). Table 3 shows the number of stars, range of colours and fit coefficients for each fit. These relations are only valid for the colour ranges for which we have data. We then construct fits for each colour using all stars, unevolved and evolved. The combined fits test that variations in surface gravity with stellar evolution will not affect the relations (as noted in Section 1). The derived relations with the combined sample have similar root mean square (RMS) errors to the separated fits, which is consistent with the result of Barnes & Evans (1976) that surface brightness is independent of luminosity class. The RMS in the residuals ranges from 0.017 to 0.03 dex, corresponding to the minimum expected uncertainties in log θLD before uncertainties in magnitudes are considered. The IC − K relations have the smallest spread for all fits.

Table 3.

Angular diameter–colour relations.

ColourNRangec0c1c2RMS (dex)Pred. frac. uncertainty
All Stars
IC − H47− 0.042–1.9350.541 ± 0.0040.133 ± 0.0030.0250.021–0.031
IC − K600.019–2.1590.528 ± 0.0050.108 ± 0.0030.0200.021–0.031
V − IC83− 0.050–1.7400.542 ± 0.0060.391 ± 0.0060.0280.043–0.065
V − H63− 0.052–3.6150.538 ± 0.0040.074 ± 0.0020.0200.018–0.029
V − K78− 0.021–3.8390.529 ± 0.0040.062 ± 0.0020.0210.018–0.029
Dwarfs and Subgiants
IC − H22− 0.042–1.1980.529 ± 0.0070.166 ± 0.0100.0310.026–0.049
IC − K240.019–1.3090.520 ± 0.0070.118 ± 0.0100.0230.024–0.047
V − IC45− 0.050–1.1600.542 ± 0.0070.378 ± 0.0110.0290.043–0.070
V − H35− 0.052–3.4470.534 ± 0.0050.079 ± 0.0030.0230.020–0.036
V − K29− 0.021–2.2090.523 ± 0.0060.063 ± 0.0050.0240.022–0.038
Giants
IC − H250.065–1.9350.523 ± 0.0110.144 ± 0.0070.0200.033–0.054
IC − K361.129–2.1590.543 ± 0.0110.098 ± 0.0070.0160.040–0.053
V − IC38− 0.010–1.7400.535 ± 0.0270.490 ± 0.046− 0.068 ± 0.0190.0260.080–0.241
V − H280.055–3.6150.532 ± 0.0090.076 ± 0.0030.0160.026–0.041
V − K492.049–3.8390.562 ± 0.0090.051 ± 0.0030.0190.031–0.040
ColourNRangec0c1c2RMS (dex)Pred. frac. uncertainty
All Stars
IC − H47− 0.042–1.9350.541 ± 0.0040.133 ± 0.0030.0250.021–0.031
IC − K600.019–2.1590.528 ± 0.0050.108 ± 0.0030.0200.021–0.031
V − IC83− 0.050–1.7400.542 ± 0.0060.391 ± 0.0060.0280.043–0.065
V − H63− 0.052–3.6150.538 ± 0.0040.074 ± 0.0020.0200.018–0.029
V − K78− 0.021–3.8390.529 ± 0.0040.062 ± 0.0020.0210.018–0.029
Dwarfs and Subgiants
IC − H22− 0.042–1.1980.529 ± 0.0070.166 ± 0.0100.0310.026–0.049
IC − K240.019–1.3090.520 ± 0.0070.118 ± 0.0100.0230.024–0.047
V − IC45− 0.050–1.1600.542 ± 0.0070.378 ± 0.0110.0290.043–0.070
V − H35− 0.052–3.4470.534 ± 0.0050.079 ± 0.0030.0230.020–0.036
V − K29− 0.021–2.2090.523 ± 0.0060.063 ± 0.0050.0240.022–0.038
Giants
IC − H250.065–1.9350.523 ± 0.0110.144 ± 0.0070.0200.033–0.054
IC − K361.129–2.1590.543 ± 0.0110.098 ± 0.0070.0160.040–0.053
V − IC38− 0.010–1.7400.535 ± 0.0270.490 ± 0.046− 0.068 ± 0.0190.0260.080–0.241
V − H280.055–3.6150.532 ± 0.0090.076 ± 0.0030.0160.026–0.041
V − K492.049–3.8390.562 ± 0.0090.051 ± 0.0030.0190.031–0.040

Numerical values for the relations in Fig. 1. The colour index, number of stars per index, range of colour and fit coefficients for equation (3) (which takes the form |$\log \theta _{Q\, =\, 0} = \sum _{n = 0}^N c_n \left(P - Q\right)^n$|⁠) are shown. For each relation, we have calculated both the RMS of the relation and the range of propagated fractional uncertainties for each zero-magnitude angular diameter, assuming 0.03 mag errors in each band.

Table 3.

Angular diameter–colour relations.

ColourNRangec0c1c2RMS (dex)Pred. frac. uncertainty
All Stars
IC − H47− 0.042–1.9350.541 ± 0.0040.133 ± 0.0030.0250.021–0.031
IC − K600.019–2.1590.528 ± 0.0050.108 ± 0.0030.0200.021–0.031
V − IC83− 0.050–1.7400.542 ± 0.0060.391 ± 0.0060.0280.043–0.065
V − H63− 0.052–3.6150.538 ± 0.0040.074 ± 0.0020.0200.018–0.029
V − K78− 0.021–3.8390.529 ± 0.0040.062 ± 0.0020.0210.018–0.029
Dwarfs and Subgiants
IC − H22− 0.042–1.1980.529 ± 0.0070.166 ± 0.0100.0310.026–0.049
IC − K240.019–1.3090.520 ± 0.0070.118 ± 0.0100.0230.024–0.047
V − IC45− 0.050–1.1600.542 ± 0.0070.378 ± 0.0110.0290.043–0.070
V − H35− 0.052–3.4470.534 ± 0.0050.079 ± 0.0030.0230.020–0.036
V − K29− 0.021–2.2090.523 ± 0.0060.063 ± 0.0050.0240.022–0.038
Giants
IC − H250.065–1.9350.523 ± 0.0110.144 ± 0.0070.0200.033–0.054
IC − K361.129–2.1590.543 ± 0.0110.098 ± 0.0070.0160.040–0.053
V − IC38− 0.010–1.7400.535 ± 0.0270.490 ± 0.046− 0.068 ± 0.0190.0260.080–0.241
V − H280.055–3.6150.532 ± 0.0090.076 ± 0.0030.0160.026–0.041
V − K492.049–3.8390.562 ± 0.0090.051 ± 0.0030.0190.031–0.040
ColourNRangec0c1c2RMS (dex)Pred. frac. uncertainty
All Stars
IC − H47− 0.042–1.9350.541 ± 0.0040.133 ± 0.0030.0250.021–0.031
IC − K600.019–2.1590.528 ± 0.0050.108 ± 0.0030.0200.021–0.031
V − IC83− 0.050–1.7400.542 ± 0.0060.391 ± 0.0060.0280.043–0.065
V − H63− 0.052–3.6150.538 ± 0.0040.074 ± 0.0020.0200.018–0.029
V − K78− 0.021–3.8390.529 ± 0.0040.062 ± 0.0020.0210.018–0.029
Dwarfs and Subgiants
IC − H22− 0.042–1.1980.529 ± 0.0070.166 ± 0.0100.0310.026–0.049
IC − K240.019–1.3090.520 ± 0.0070.118 ± 0.0100.0230.024–0.047
V − IC45− 0.050–1.1600.542 ± 0.0070.378 ± 0.0110.0290.043–0.070
V − H35− 0.052–3.4470.534 ± 0.0050.079 ± 0.0030.0230.020–0.036
V − K29− 0.021–2.2090.523 ± 0.0060.063 ± 0.0050.0240.022–0.038
Giants
IC − H250.065–1.9350.523 ± 0.0110.144 ± 0.0070.0200.033–0.054
IC − K361.129–2.1590.543 ± 0.0110.098 ± 0.0070.0160.040–0.053
V − IC38− 0.010–1.7400.535 ± 0.0270.490 ± 0.046− 0.068 ± 0.0190.0260.080–0.241
V − H280.055–3.6150.532 ± 0.0090.076 ± 0.0030.0160.026–0.041
V − K492.049–3.8390.562 ± 0.0090.051 ± 0.0030.0190.031–0.040

Numerical values for the relations in Fig. 1. The colour index, number of stars per index, range of colour and fit coefficients for equation (3) (which takes the form |$\log \theta _{Q\, =\, 0} = \sum _{n = 0}^N c_n \left(P - Q\right)^n$|⁠) are shown. For each relation, we have calculated both the RMS of the relation and the range of propagated fractional uncertainties for each zero-magnitude angular diameter, assuming 0.03 mag errors in each band.

To estimate the uncertainties in limb-darkened diameters, we propagate uncertainties for assumed 0.03 errors in both magnitudes of a given colour. The most precise relations for all stars are those for V − H and V − K, which have estimated uncertainties of 1.8–2.9 per cent. (The range is due to the dependence of the uncertainty on the colour, which we have varied within the range of the sample.) The least precise results are in V − IC, where the corresponding uncertainties could be as high as 6.5 per cent.

Initially, M dwarfs were included in our sample to see if the derived relation would change drastically with their inclusion. The addition of dwarfs at T < 3900 K adds a statistically significant quadratic coefficient to our fits in the V ��� IC relation. Our temperature cut therefore provides a more precise relation for FGK stars in particular. In contrast, the V − IC relation in giants has a marginally significant quadratic term, even excluding stars below 3900 K. On the other end of our temperature range, inclusion of the A dwarfs (and one A giant) did not significantly change the fits, and so we are less hesitant to include them here.

We also test whether the angular diameter relations have a statistically significant dependence on stellar metallicity. Metallicity has shown to be a factor in relations of stellar radii to colour indices (Boyajian et al. 2012b), since changes in metallicity tend to affect bluer parts of the stellar spectra due to line blanketing (McNamara & Colton 1969). Such effects would propagate to stellar angular diameter relations, but in all colours considered in this paper the relations were insensitive to metallicity. This is consistent with the findings of Boyajian et al. (2014), who found that metallicity in their angular diameter relations was strongest for the colours with the shortest wavelength bands (B − V and g − r), where the bluer colours would be affected more strongly by line blanketing.

4.1 Comparison with previous works

We directly compare our relations to those of Boyajian et al. (2014), and for V − IC to the relation in table 3 of Kervella & Fouqué (2008), and the V − K relation to equation (23) of Kervella et al. (2004b), as seen in Fig. 1. All the mentioned relations are valid for dwarfs and subgiants, and it should be noted that all extend through the M spectral type (not shown here). In V − IC, the largest offset in angular diameter between the data and the Kervella & Fouqué (2008) prediction is 0.08 dex, and for V − K the largest offset with respect to Kervella et al. (2004b) is 0.06 dex. We expect at least a reasonable agreement with the results of Boyajian et al. (2014) and Kervella & Fouqué (2008) (see Fig. 1) by construct, since we include the subset of angular diameters used in these works which meet our uncertainty constraint (≤2 per cent). Nevertheless, our sources differ from these works for IC (Koen et al. 2010; Mallama 2014), H (Gezari et al. 1999) and K (Neugebauer & Leighton 1969; Kidger & Martín-Luis 2003; Kimeswenger et al. 2004) band photometry, as well as a larger sample within the FGK colour range. Hence, differences in the predicted angular diameters exist, particularly on the blue end of the V − IC relation, where both Kervella & Fouqué (2008) and Boyajian et al. (2014) use higher-order polynomial fits which underestimate the diameters of the bluest dwarfs, while fitting well for dwarfs well beyond the red end of our colour range.

5 CONCLUSIONS

This work describes new relations linking stellar angular diameter to photometric colours. We use a data set with roughly twice the precision in angular diameter measurements compared to previous papers. We use empirical evidence that predictions of angular diameters from colour and magnitude are insensitive to luminosity class to construct, for the first time, a prediction of angular diameters at fixed magnitude for A–K stars across the stages of stellar evolution. We find that there is no dependence on stellar metallicity for the colours tested.

Further improvement to the relations will require additional angular diameter measurements to fill in parameter space for the earlier-type giants. Additionally, the lack of demonstrably consistent IC photometry for M stars of any luminosity class limits us from extending the red end of our relations. Transformations among systems are susceptible to differences in zero-points, susceptibility of filters to red leaks and correlated errors in the filter profiles (Mann & von Braun 2015). Nevertheless, for FGK stars the continuity in the relation between colour and angular size is well constrained by the regions of overlap of the spectral classes.

Acknowledgements

This work was supported by a graduate fellowship from the Gruber Foundation. Additional gratitude to Anthony Mallama for providing converted Cousins I magnitudes for the dwarfs in our sample.

This research has made use of the NASA Exoplanet Archive, which is operated by the California Institute of Technology, under contract with the National Aeronautics and Space Administration under the Exoplanet Exploration Program.

REFERENCES

Aufdenberg
J. P.
et al. ,
2006
,
ApJ
,
645
,
664

Baines
E. K.
,
McAlister
H. A.
,
ten Brummelaar
T. A.
,
Turner
N. H.
,
Sturmann
J.
,
Sturmann
L.
,
Goldfinger
P. J.
,
Ridgway
S. T.
,
2008
,
ApJ
,
680
,
728

Baines
E. K.
,
McAlister
H. A.
,
ten Brummelaar
T. A.
,
Sturmann
J.
,
Sturmann
L.
,
Turner
N. H.
,
Ridgway
S. T.
,
2009
,
ApJ
,
701
,
154

Baines
E. K.
et al. ,
2010
,
ApJ
,
710
,
1365

Baines
E. K.
et al. ,
2011
,
ApJ
,
731
,
132

Barnes
T. G.
,
Evans
D. S.
,
1976
,
MNRAS
,
174
,
489

Boyajian
T. S.
,
2009
,
PhD thesis
,
Georgia State University

Boyajian
T. S.
et al. ,
2008
,
ApJ
,
683
,
424

Boyajian
T. S.
et al. ,
2012a
,
ApJ
,
746
,
101

Boyajian
T. S.
et al. ,
2012b
,
ApJ
,
757
,
112

Boyajian
T. S.
et al. ,
2013
,
ApJ
,
771
,
40

Boyajian
T. S.
,
van Belle
G.
,
von Braun
K.
,
2014
,
AJ
,
147
,
47

Boyajian
T.
et al. ,
2015
,
MNRAS
,
447
,
846

Calchi Novati
S.
et al. ,
2010
,
ApJ
,
717
,
987

Carpenter
J. M.
,
2001
,
AJ
,
121
,
2851

Chiavassa
A.
,
Bigot
L.
,
Kervella
P.
,
Matter
A.
,
Lopez
B.
,
Collet
R.
,
Magic
Z.
,
Asplund
M.
,
2012
,
A&A
,
540
,
A5

Ciardi
D. R.
,
van Belle
G. T.
,
Akeson
R. L.
,
Thompson
R. R.
,
Lada
E. A.
,
Howell
S. B.
,
2001
,
ApJ
,
559
,
1147

Crepp
J. R.
et al. ,
2012
,
ApJ
,
751
,
97

Cutri
R. M.
et al. ,
2003
,
The 2MASS All Sky Catalog of Point Sources
.
Pasadena
:
IPAC

Davis
J.
,
Tango
W. J.
,
1986
,
Nature
,
323
,
234

Davis
J.
,
Ireland
M. J.
,
North
J. R.
,
Robertson
J. G.
,
Tango
W. J.
,
Tuthill
P. G.
,
2011
,
Publ. Astron. Soc. Aust.
,
28
,
58

Demory
B.
et al. ,
2009
,
A&A
,
505
,
205

di Benedetto
G. P.
,
1993
,
A&A
,
270
,
315

Di Benedetto
G. P.
,
2005
,
MNRAS
,
357
,
174

di Benedetto
G. P.
,
Foy
R.
,
1986
,
A&A
,
166
,
204

Di Folco
E.
,
Thévenin
F.
,
Kervella
P.
,
Domiciano de Souza
A.
,
Coudé du Foresto
V.
,
Ségransan
D.
,
Morel
P.
,
2004
,
A&A
,
426
,
601

di Folco
E.
et al. ,
2007
,
A&A
,
475
,
243

Dyck
H. M.
,
Benson
J. A.
,
van Belle
G. T.
,
Ridgway
S. T.
,
1996
,
AJ
,
111
,
1705

Fukui
A.
et al. ,
2015
,
ApJ
,
809
,
74

Gezari
D. Y.
Pitts
P. S.
Schmitz
M.
,
1999
,
VizieR Online Data Catalog
,
2225
,
0

Hanbury
B. R. H.
,
Davis
J.
,
Lake
R. J. W.
,
Thompson
R. J.
,
1974
,
MNRAS
,
167
,
475

Hutter
D. J.
et al. ,
1989
,
ApJ
,
340
,
1103

Iyengar
K. V. K.
,
Strafella
F.
,
Lorenzetti
D.
,
Cosmovici
C. B.
,
1982
,
JA&A
,
3
,
451

Kervella
P.
,
Fouqué
P.
,
2008
,
A&A
,
491
,
855

Kervella
P.
,
Thévenin
F.
,
Morel
P.
,
Bordé
P.
,
Di Folco
E.
,
2003
,
A&A
,
408
,
681

Kervella
P.
et al. ,
2004a
, in
Dupree
A. K.
Benz
A. O.
, eds,
IAU Symp. 219, Stars as Suns: Activity, Evolution and Planets
.
Astron. Soc. Pac.
,
San Francisco, CA
, p.
80

Kervella
P.
,
Thévenin
F.
,
Di Folco
E.
,
Ségransan
D.
,
2004b
,
A&A
,
426
,
297

Kidger
M. R.
,
Martín-Luis
F.
,
2003
,
AJ
,
125
,
3311

Kimeswenger
S.
et al. ,
2004
,
A&A
,
413
,
1037

Koen
C.
,
Kilkenny
D.
,
van Wyk
F.
,
Marang
F.
,
2010
,
MNRAS
,
403
,
1949

Koornneef
J.
,
1983
,
A&A
,
51
,
489

Ligi
R.
et al. ,
2012
,
A&A
,
545
,
A5

Maestro
V.
et al. ,
2013
,
MNRAS
,
434
,
1321

Mallama
A.
,
2014
,
J. Am. Assoc. Var. Star Obs.
,
42
,
443

Mann
A. W.
,
von Braun
K.
,
2015
,
PASP
,
127
,
102

Markwardt
C. B.
,
2009
, in
Bohlender
D. A.
Durand
D.
Dowler
P.
, eds,
ASP Conf. Ser. Vol. 411, Astronomical Data Analysis Software and Systems XVIII
.
Astron. Soc. Pac.
,
San Francisco
, p.
251

Mazumdar
A.
et al. ,
2009
,
A&A
,
503
,
521

McNamara
D. H.
,
Colton
D. J.
,
1969
,
PASP
,
81
,
826

Monnier
J. D.
et al. ,
2012
,
ApJ
,
761
,
L3

Mozurkewich
D.
et al. ,
1991
,
AJ
,
101
,
2207

Mozurkewich
D.
et al. ,
2003
,
AJ
,
126
,
2502

Neugebauer
G.
Leighton
R. B.
,
1969
,
Two-Micron Sky Survey. A Preliminary Catalogue
.
NASA SP, NASA
,
Washington

Nordgren
T. E.
et al. ,
1999
,
AJ
,
118
,
3032

Nordgren
T. E.
,
Sudol
J. J.
,
Mozurkewich
D.
,
2001
,
AJ
,
122
,
2707

Press
W. H.
Teukolsky
S. A.
Vetterling
W. T.
Flannery
B. P.
,
1992
,
Numerical recipes in C. The art of scientific computing
, 2nd edn.
Cambridge Univ. Press
,
Cambridge

Quirrenbach
A.
,
Mozurkewich
D.
,
Buscher
D. F.
,
Hummel
C. A.
,
Armstrong
J. T.
,
1996
,
A&A
,
312
,
160

Richichi
A.
,
Roccatagliata
V.
,
2005
,
A&A
,
433
,
305

Shao
M.
et al. ,
1988
,
ApJ
,
327
,
905

Thévenin
F.
,
Kervella
P.
,
Pichon
B.
,
Morel
P.
,
di Folco
E.
,
Lebreton
Y.
,
2005
,
A&A
,
436
,
253

van Belle
G. T.
,
1999
,
PASP
,
111
,
1515

van Belle
G. T.
,
Creech-Eakman
M. J.
,
Hart
A.
,
2009
,
MNRAS
,
394
,
1925

van Leeuwen
F.
,
2007
,
A&A
,
474
,
653

von Braun
K.
et al. ,
2011
,
ApJ
,
740
,
49

von Braun
K.
et al. ,
2014
,
MNRAS
,
438
,
2413

Wesselink
A. J.
,
1969
,
MNRAS
,
144
,
297

White
N. M.
,
Feierman
B. H.
,
1987
,
AJ
,
94
,
751

Wittkowski
M.
,
Hummel
C. A.
,
Johnston
K. J.
,
Mozurkewich
D.
,
Hajian
A. R.
,
White
N. M.
,
2001
,
A&A
,
377
,
981